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Abstract—Bone remodeling occurs by the balanced action of
bone resorbing osteoclasts (OC) and bone-building osteoblasts.
Increased bone resorption by excessive OC activity contributes
to malignant and non-malignant diseases including osteoporo-
sis. To study OC differentiation and function, OC formed in
in vitro cultures are currently counted manually, a tedious
procedure which is prone to inter-observer differences. Aiming
for an automated OC-quantification system, classification of
OC and precursor cells was done on fluorescence microscope
images based on the distinct appearance of fluorescent nu-
clei. Following ellipse fitting to nuclei, a combination of eight
features enabled clustering of OC and precursor cell nuclei.
After evaluating different machine-learning techniques, LO-
GREG achieved 74% correctly classified OC and precursor cell
nuclei, outperforming human experts (best expert: 55%). In
combination with the automated detection of total cell areas,
this system allows to measure various cell parameters and most
importantly to quantify proteins involved in osteoclastogenesis.
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I. Introduction

BONE remodeling by the balanced action of mult-
inucleated bone resorbing cells (osteoclasts, OC)

and subsequent formation of bone mass by bone-building
osteoblasts is important for maintaining bone mass and
strength as well as mineral homeostasis in the human
body [1], [2]. Excessive osteoclast activity leads to in-
creased bone resorption causing local and systemic os-
teopenia as observed in diseases like osteoporosis and
rheumatoid arthritis as well as in primary and secondary
malignancies of the bone (osteosarcoma, bone metastasis;
[3], [4]). Therefore, excess bone resorption by OC is a
major research issue and focus of therapeutic invention
in bone-related diseases [5]. In vitro cultures of OC allow
for analysis of parameters and substances that stimulate
or inhibit OC formation by differentiation and fusion
from isolated mesenchymal precursor cells and can further
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be used to analyze the effects of OC-targeted therapies
[6]. Currently, the evaluation of OC formation in cul-
ture is based on the histochemical staining for tartrate-
resistent alkaline phosphatase (TRAP), a protein highly
expressed in mature OC, followed by manual counting of
TRAP-positive, multinucleated (≥ 3 nuclei) cells under
the microscope [7], [8]. Although the histochemical stain-
ing procedure for TRAP is fast, the subsequent human
identification of TRAP-positive OC on the slide is a
time consuming task. In addition, the sometimes rather
faint staining of the multinucleated cells and the lack of
orientation on the coverslip make the counting of OCs in
culture often difficult and result in large inter- and intra-
observer variability. The major disadvantage of the visual
evaluation, however, is that determining other parame-
ters such as the number of precursor cells, cell area, or
number of nuclei/OC is not in the least feasible. Due to
the histochemical procedure, the specific detection (and
quantification) of additional proteins or molecules by a
subsequent staining procedure in OC and precursor cells
is no longer possible. As the expression patterns of targets
may differ in precursor cells and OC, assessment of cellular
levels of these targets after pharmacological treatments
can reveal important information for the understanding of
the physiology and pathology of bone resorbing processes.
Immunofluorescence (IF) microscopy allows parallel de-
tection of several molecules within the same experiment,
given that differentially labeled fluorescence-conjugated
antibodies or probes are applied and detected by a fluores-
cence microscope at their respective excitation/emission
wavelengths [9]. We have previously developed an auto-
mated method for OC and precursor cell detection [10].
In this setting, cell detection and the subsequent OC
and precursor cell discrimination require three different
staining steps. Although staining for additional proteins
could be performed, only microscopes equipped with four
or more different fluorescence filters/channels are suitable
for the further evaluation of protein patterns of interest.
Additionally, staining protocols with four or more different
target proteins are complex to create and execute. To
overcome these difficulties, we searched for other criteria
to discriminate between OC and precursor cells. Indeed,
changes of the shape and appearance of nuclei in the course
of development of cells are well known (e.g. [11]–[13]) and
may also be applicable to identify OCs in cell culture. The
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human observer may be able to identify/describe these
differences such as varying nuclei size, which would then
allow for developing algorithms that are specifically based
on these criteria [14]. Alternatively, unknown differences
among nuclei of different cell populations may be unveiled
by the aid of advanced microscopic or computer technolo-
gies [15]. We have developed an automated system, which
uses shape and texture features of nuclei and machine
learning algorithms for the classification of OC and their
mesenchymal precursor cell nuclei. Training, validation
and application of the classifier are described.

II. Materials and Methods

IF-labeling protocol for generation of ground truth data:
The culture conditions to generate isolated murine OC
and the IF-staining protocol required for cell detection
and classification of OC and precursor cells based on
amount of nuclei (DAPI staining) and F4/80 macrophage
marker expression has been described in detail in [10]. In
brief, mouse bone marrow cells were collected in minimum
essential medium and plated in 24-well plates, each well
containing a glass cover slip. OC formation from precursor
cells was stimulated by incubation of the cells for 8 days in
medium containing 25 ng / ml receptor activator of nuclear
factor B ligand (RANKL) and 15 ng / ml macrophage
colony stimulating factor (M-CSF). The cells were fixed
and all cells were stained using two antibodies: one di-
rected against the calcitonin receptor (Acris, Herford,
Germany), staining the border of cells, and another one
directed against α-tubulin (SigmaAldrich, Deisenhofen,
Germany), staining cytoskeletal elements. Both antibodies
were visualized using an Alexa Fluor 647-conjugated sec-
ondary antibody (Invitrogen, Carlsbad, CA, USA). This
staining step is necessary to identify total areas of all
cells. For discrimination of OC from precursor an antibody
directed against F4/80 macrophage marker (eBioscience,
San Diego, CA, USA) was applied, which is expressed
predominantly in precursor cells, and which was visualized
with an Alexa Fluor 568-conjugated secondary antibody
(Invitrogen). 4’,6-diamidino-2-phenylindole (DAPI) stain-
ing was used to identify the nuclei. Finally, the cov-
erslips with the fluorescence-labeled cells were mounted
on slides and subjected to IF microscopy. Images of the
stained cells were acquired in the fluorescence-channels
corresponding to the applied fluorochromes using the
TissueFAXS automated epi-fluorescence microscope (Tis-
sueGnostics GmbH, Vienna, Austria) with a 40x (oil) /
NA 1.3 objective. To ensure correct focus, all images,
were automatically taken on seven different heights of
the microscope stage (2 m steps) and merged into one
critically sharp image. IF-labeling protocol for cell area de-
tection and nuclei-based classification: Staining for F4/80
macrophage marker in combination with the Alexa Fluor
568-conjugated secondary antibody is omitted. All other
steps were the same.

III. Results

A. Generation of Ground Truth Data

Ground truth data from nuclei of OC and precursor
cells in culture were generated on IF-images by five human
experts trained in cell biology. The experts studied images
from three fluorescence channels: the channel detecting
Alexa Fluor 647-emitted fluorescence, where all cells are
visible due to staining of cytoskeletal and membrane pro-
teins (Fig. 1A), the channel detecting Alexa Fluor 568-
emitted fluorescence, where the macrophage marker F4/80
labels predominantly the precursor cells (Fig. 1B) and
the channel detecting DAPI-emitted fluorescence (DAPI-
channel) for nuclei identification (Fig. 1C). In combina-
tion, these images enabled the experts to identify OC
based on the criteria of multinuclearity (three or more nu-
clei/OC, Fig. 1C, asterisk) and low F4/80 staining inten-
sity in OC (Fig. 1B, asterisk). Each expert independently
identified OC. Cells identified by at least two experts were
regarded as true OC. All other cells were regarded as
precursor cells (ground truth data set 1 = GT1). Experts
manually marked up the perimeter of the nuclei in the
corresponding DAPI channel (Fig. 1D) using a Wacom
Graphics Tablet and the image processing program Adobe
Photoshop CS 4.0. A total number of 4293 perimeters were
extracted (for examples see Fig. 1E) and served as ground
truth data set 2 (= GT2).

Fig. 1. IF microscopic images from cell cultures containing OC
and their precursor cells were shown to human experts. Using the
combined information from the images shown in (A), (B) and (C),
the human experts classified the cell type (asterisk indicates an OC,
ground truth data set 1) and marked up the nuclei (D; n = 4293).
These manually drawn perimeters made up the ground truth data
set 2 (E). Ellipse-fitting to these nuclei is shown in (F).

B. Application and Validation of an Ellipsoid-based Ap-
proach to Discriminate Cell Nuclei

For automated processing, the images derived from
the DAPI-channel were binarized by adaptive threshold-
ing [16] resulting in images where all nuclei have pixel
values greater than zero. Boundary detection methods
were applied to get the corresponding perimeter. The
predominant elliptical shape of mammalian cell nuclei can
be approximated by ellipse-fitting [17]. Therefore, we also
fit ellipses using the least squares criterion (Fig. 1F) to
obtain a geometrical figure that allows for subsequent
investigation of shape and textural features computed
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TABLE I
F1-scores determining accuracy of ellipse-fitting.

Mean F1 Stdev

Exp vs Exp 89.95 10.01

Classifier vs Exp 85.79 13.62

from perimeter and area covered by each nucleus and for
discrimination between nuclei of OC and precursor cells
thereafter. From these ellipses, the following set of eight
features was derived: five texture-based features (mean
value, standard deviation, kurtosis, entropy and skewness
of intensities) and three shape-based features (length of
axes a and b, times 2, area and eccentricity of the ellipse).

To assure that ellipses were suitable to model nuclei,
we performed the following evaluation based on a pixel-
wise comparison of areas: First, we compared the areas
obtained by filling of marked perimeters (Fig. 1E, GT2)
derived from individual human experts. In table I, this
comparison is graphically exemplified. Pixels lying within
both human expert markups are true positives (TP), pixels
obtained from one expert only are either false positives
(FP) or considered false negatives (FN). We computed the
balanced F1-score [18],

F = 2 ∗ precision ∗ recall
precision+ recall

(1)

precision =
tn

tn+ tp
(2)

recall =
tp

tp+ tn
(3)

, which is a weighted average of precision and recall for
the areal agreement between individual human experts as
shown in Table I. Subsequently, we compared the area
of the fitted ellipse (Fig. 1F) for each nuclei in a pixel-
wise manner with the area obtained from markups of
individual expert. As shown in Table I, the overlapping
confidence intervals of the computed F1-scores, suggest
that description of nuclei by individual human experts and
fitted ellipses is statistically indistinguishable.

We analyzed the set of features computed from the
ellipses for their ability to discriminate OC and precursor
nuclei. None of the single ellipse features enabled grouping
of the two classes of nuclei, therefore we combined all
features to enable discrimination. Sammon Mapping, a
multidimensional scaling technique illustrates the eight
dimensional space spanned by the calculated features [19].
Sammon Mapping optimizes a stress value that tries to
preserve the inter-point distances of the n-dimensional
feature space into the lower-dimensional projection space
by Monte Carlo optimization. The result of this projection
is depicted in Fig. 2. OC nuclei are represented by black
dots whereas precursor cells are shown as grey crosses.
The output of Sammon Mapping indicates two clusters of
nuclei and suggests that OC and precursor cell nuclei can
be distinguished by the features. This encouraged us to

TABLE II
Accuracy of nuclei classification.

MLP SVM LOGREG
Training set S1, Test set S2 63.31 68.43 76.06
Training set S2, Test set S1 79.49 66.51 72.02

Mean 71.40 67.47 74.04

train a machine-learning system in order to classify the
nuclei.

Fig. 2. Sammon Mapping of all ellipse features of OC and precursor
nuclei suggests that a combination of all features allows to distinguish
between nuclei of OC (black dots) and precursor cells (grey crosses).
The arrows indicate the centers of the clusters. Values shown on
x- and y-axis are arbitrary as Sammon Mapping preserves only
distances.

C. Training and Evaluation of a Machine-learning System
for Discrimination of Nuclei of OC and Precursor Cells

Three machine-learning techniques were evaluated such
as Multilayer Perceptron (MLP), Support Vector Ma-
chines (SVM) and Logistic Regression (LOGREG). We
used the implementation shipped with Weka 3.6.5 [20].
The classifier was trained using two sets of nuclei: The first
set (S1) consisted of 1307 OC-nuclei and the same amount
of precursor cell nuclei. The second set (S2) contained 813
OC-nuclei and 866 precursor cell nuclei. Both sets S1 and
S2 were used as training and as test set for the machine
learning techniques (i.e. train by S1 and test by S2, and
train by S2 and test by S1). The numbers of correctly
classified nuclei (in comparison to GT1) are shown in
Table 2. For each classifier, the corresponding mean from
both resulting models was computed. Among the machine-
learning techniques, LOGREG performed best with a
mean of 74% correctly classified nuclei.
1) Performance and Application of the Nuclei-classifier:

Having built the classifier, we were interested in comparing
human and algorithm performance on an equalized level.
Therefore, cell context information (shown e.g. in Fig. 1A-
C) was removed and two human experts independently

World Academy of Science, Engineering and Technology 67 2012

747



classified extracted nuclei (n=84) as illustrated in Fig.
3A. This independent test set was created with a ratio
of 50% OC and 50% precursor cell nuclei, which were
randomly chosen from GT1. Due to the huge amount of
marked up nuclei (n = 4293) it was very unlikely that
one of the human experts would recognize the nuclei seen
before during the ground truth creation process. LOGREG
also performed best on this test set. The output of this
evaluation is illustrated in Fig. 3B. LOGREG achieved a
performance of 76% correctly classified nuclei whereas the
best human expert only achieved a performance of about
55%. When only looking at nuclei where both experts
agreed on the identity of the nuclei class the human
performance decreased to only 30%.

Fig. 3. Examples from the independent test set of nuclei, n= 84
(A). Evaluation of algorithm and human expert performance on the
independent test set of nuclei (B). Numbers for correctly classified
nuclei are shown in grey while numbers for incorrectly classified nuclei
are shown in white.

The application of this classifier on virtual images de-
rived from an in vitro culture of isolated murine OC
is demonstrated in Fig. 4. From the images depicting
the nuclei stained by DAPI (Fig. 4A), a binary mask
is derived that shows nuclei in grey and background in
black (Fig. 4B). Afterwards, ellipse-boundaries are de-
tected (B, white lines) to enable ellipse fitting. Then
the classifier can be used to divide the nuclei in two
populations, namely OC-associated (Fig. 4C) or precursor
cell-associated (Fig. 4D) nuclei. Incomplete nuclei at image
borders cannot be classified. If, in addition to DAPI-
staining, the entire cells were identified via IF-labeling
of α-tubulin and calcitonin receptor (Fig. 4C and D) as
outlined in material and methods [10], the classification of
nuclei would enable cell classification (OC, precursor cells)
and subsequent computing of cell-associated parameters
of interest (area, shape, . . . ). This combination of entire
cell-staining and nuclei-staining via DAPI requires two
fluorescence channels of a microscope, the usually available
third fluorescence channel of the microscope remains free
for investigation of a protein/molecule of interest that is to
be quantitated in OC or precursor cells. Fig. 5A depicts
OC-culture images (two fields of view), where total cell
staining (α-tubulin and calcitonin receptor) and nuclear
staining (DAPI) are combined. Application of the classifier
to the DAPI channel of these images allows discrimination
of two nuclei populations, namely OC-nuclei (Fig. 5B)

TABLE III
Example results

OC Precursor cell
Number of cells 10 546

Total area of cells (pixel) 130466 548967
Mean area of cell (pixel) 13037 1003

Mean int. of F4/80 protein 29 51

and precursor cell-nuclei (Fig. 5C). The final combination
of the cellular mask derived from Fig. 5A (according
to [10]) with the classification accomplished in Fig. 5B
and 5C enables the quantification of the expression level
(fluorescence intensity) of any protein as well as other cell-
associated parameters as exemplified in Table 3.

Fig. 4. IF microscopic images from cell cultures showing DAPI-
stained nuclei of OC and their precursor cells (A). Binary mask of
the same image showing nuclei in grey and background in black,
including boundaries (white) (B) that are later used to inscribe
ellipses. Nuclei-output of the classifier for OC(C) and precursor
cells (D), both in black-white projected on the corresponding image
showing α-tubulin/calcitonin-receptor stained total cell areas.

IV. Discussion

To the best of our knowledge, this is the first time
that ellipse fitting to nuclei has contributed to classify
distinct bone cell types. Human experts observed that
nuclei in OC are different from precursor cell nuclei, but
could not describe the differences regarding their shape
and texture. Nuclei are often elliptical in shape and there
are recent examples that have used ellipse-detection algo-
rithms for segmentation and separation of cell nuclei [21],
[22]. Therefore, we validated the suitability of ellipses to
describe nuclei-area, and illustrated the clustering of OC
and precursor cell nuclei upon combination of eight shape-
and texture- features of the ellipses by Sammon Mapping.
Ellipse shape features alone were not sufficient for ac-
ceptable performance. Three machine-learning techniques
(MLP, SVM and LOGREG) were tested as classifiers for
the nuclei using these features. During the evaluation pro-
cess performed on ground truth data obtained from human
biological experts, the classifier LOGREG outperformed
human experts in pure DAPI-based nuclei classification,
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Fig. 5. IF microscopic images from OC-cell cultures showing -
tubulin/calcitonin-receptor stained total cell areas in combination
with DAPI-stained nuclei of OC and their precursor cells (A). Binary
masks of the same image showing OC-nuclei (B) or precursor cell
nuclei (C) in white after application of classifier (B).

where the best human expert only classified 55% of nuclei
correctly and demonstrated correct classification of 74%
of nuclei compared to GT1, where human experts had
determined the cell type based on various cell param-
eters (amount of nuclei, protein markers expressed). A
reproducible correct classification of 74% must be seen
in relation to the observation that human experts, who
are generally regarded as the golden standard exhibit
intra- and interexpert variabilities in determination of
OC and precursor cells. We determined a coefficient of
variation of 30% among n=3 experts counting OC in the
same region (unpublished observation) even when already
compensating for systemic differences.

The existence of differences in the texture and shape
of nuclei of various cell types, especially of tumor cells
with variable prognostic factors [11]–[13] is well known. In-
deed, histopathological assessment of the nuclear structure
by brightfield microscopy remains the definitive clinical
diagnostic approach to determine malignancy. In recent
years, progress in the field of computerized 2D and even
3D image analysis was achieved, enabling quantification of
nuclear morphology. This has been shown to be important
for the assessment of the nuclear morphological changes
associated with malignancy of tumors [15]. However, as-
signment of nuclei to different categories reflecting tumor
grading is usually based on a priori knowledge of the
criteria for nuclei-classification such as size, chromatin
distribution, etc. This allows for specific adjustment of
algorithm parameters [14]. Advanced tools such as 3D
nuclear morphometry that help to depict unknown dif-

ferences between nuclei of different cell types are more
time-intensive and therefore presumable not applicable for
routine and high-throughput screening assays in osteoclast
cultures [15]. The new classifier described herein requires
solely the fluorescence-microscopic images acquired from
the DAPI-labeled nuclei as input and rapidly returns the
classification. The rapid staining procedure of cultured
cells with DAPI (from fixation to embedding about one
hour) and the fast performance of the classifier (few sec-
onds for 5,000 nuclei) make the classifier ideally suited for
large-scale screening assays. This new system has been de-
veloped to classify nuclei, which consequently will led to a
better identification of different cell types. However, per se
it is not able to identify and subsequently measure features
of the nuclei-associated cells (e.g. cell-area, cell number).
To achieve this, the classifier has to be combined with the
IF-staining of a cytoskeletal protein (e.g. α-tubulin) found
in every cell type, a protocol that requires about two more
hours. Through the combination of an algorithm which
is able to distinguish the cells from the background and
the nuclei-discrimination system, many parameters of OC
and precursor cells can be measured giving the system a
significant improvement over the currently applied TRAP-
staining and manual quantification of OC in cultures.
Especially the possibility to quantify the expression levels
of proteins in the target cells and determine protein up
and down regulation during drug-treatment can open up
new avenues in bone-disease related research. In summary,
we developed a classifier which is suitable not only to
quantitate OC in bone-marrow-derived cell cultures but
additionally helps to determine precursor cell number and
multiple cell-associated parameters.
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