
© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

1

Inductive Rule Learning

Univ.-Lektor Dr.techn. Alexander K. Seewald
Österreichisches Forschungsinstitut

für Artificial Intelligence

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

2

Revisited: How to improve on 1R?

How to reduce 1R's bias / increase its complexity?
• Divide-and-Conquer: Apply algorithm recursively! Choose best attribute at

top and then recursively create rules for each subset instead of just counting
the most common class. Repeat until "pure" (=only examples of the same
class). This creates a decision tree of attribute and class values.

⇒ Decision Tree Learning (as we already saw)

Another idea:
• Separate-and-Conquer: Learn best rule for a subset of training data, remove

both positive examples which are correctly classified and those negative
examples erroneously classified as positive (latter examples should number
few or none). Apply this algorithm recursively until very few or no positive
examples remain. This creates a rule set for classification.

• Not as eff icient as divide-and-conquer, but has other advantages: More
compact than decision trees, a modular and easily understandable
representation and the abili ty to learn partial models.

⇒ Inductive Rule Learning

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

3

Rule Sets - Bias & Variance

Low bias, high variance. Concept boundaries are axis-parallel
hyperrectangles (see above), one for each rule within the ruleset.

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

4

Separate-And-Conquer Rule Learning

Learning Rule Sets: Sequential Set Covering Algorithm
procedure LearnRules(c,TD)
Rules := { } ; Pos := { xi ∈ TD | yi = c} ;
Neg := { xi ∈ TD | yi ≠ c} ;
repeat

Rule := FindBestRule(c,Pos,Neg);
Pos := Pos \ Covers(Rule,Pos);
Neg := Neg \ Covers(Rule, Neg);
Rules := Rules ∪ Rule;

until RuleSetStopCrit(Rules,Pos,Neg);
return (Rules);

Simplest stopping criterion 2:

RuleStopCrit = true if the rule
covers no more negative

examples, i.e., Neg = {} . Such a
rule is called consistent.

procedure FindBestRule(c,Pos,Neg)
Rules := { ⇒ c } // ← create default rule
while not RuleStopCrit(Rule,Pos,Neg) do

Rule := Rule ∪ FindBestCondition(Pos,Neg);
Pos := Covers(Rule,Pos);
Neg := Covers(Rule,Neg);

endwhile; return (Rule);

Simplest stopping criterion 1:

RuleSetStopCrit = true if all
positive examples are covered by
the current rule set, i.e. Pos = {}

A rule covers an example if the conditions of the rule match the attribute values
of the example. Rules always predict the positive class.

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

5

How to find the best rule?

Given set of positive / negative examples, find best rule (=set of conditions) that

• Covers many positive examples

• Covers few or none negative examples

• Is as simple as possible (Ockham's razor)

Exhaustive search is impossible since this would have to consider all possible
subsets of rule conditions (np for p nominal attributes each having n-1 possible
values). Heuristic search is needed, but gives no guarantee of best solution.

General search directions

• Bottom-up (specific-to-general)

Start with a very long list of conditions (e.g. the complete description of one
positive example) and delete conditions one by one (step-wise generalization)

• Top-down (general-to-specific)

Start with empty rule (no conditions) and add conditions one by one (step-wise
specialization). Similar to our version of FindBestRule.

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

6

Heuristic Search Algorithms

• Hill-climbing

At each step, add or drop the condition (from all possible conditions) that
maximises some local heuristic evaluation measure.

Problem: short-sighted and greedy.

• Beam search

Always keep a list of n alternative refinements; expand the currently best one
(according to some local heuristic). Explores larger portion of search space
and can find globally better solutions. Less short-sighted, but stil l greedy.

• Best-first search

Explore all possible solutions, always focusing on the most promising first. If
unrestricted, explores full search space. Must be accompanied by search
pruning. Still ineff icient, but can guarantee to find best solution.

...

Most commonly used

• Top-down search with hill -climbing (as in FindBestRule) or beam search.

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

7

How to find best condition to add?

General approach for FindBestCondition: test all
possible conditions and choose the best one
according to heuristic, e.g. max.ent. & (p>n).

Example: Weather dataset, yes=positive examples
(target), no=negative examples.

• Partial rule { outlook=rainy ⇒ yes} . Covers 5
examples: 3 positive and 2 negative.

Possible conditions for improvements:
Temp < 66.5 (0+,1-) Humidity ≥ 75 (3+,1-)
Temp ≥ 66.5 (3+,1-) Humidity < 75 (0+,1-)
Temp < 70.5 (2+,1-) Windy=false (3+,0-)
Temp ≥ 70.5 (1+,1-) Windy=true (0+,2-)
Temp < 73.0 (2+,2-) ...
Temp ≥ 73.0 (1+,0-)
• Choose Windy=false. Refined rule is now

{ outlook=rainy & windy=false ⇒ yes} . Covers
3 positive and 0 negative examples.

⇒⇒ We have found a consistent rule and return it

O ut look T H W indy P lay?
overcast 64°F 65% true yes

r a iny 65°F 70% t r ue n o
sunny 69°F 70% f al se yes
sunny 75°F 70% true yes

overcast 81°F 75% f al se yes
r a iny 68°F 80% false yes
r a iny 75°F 80% false yes
sunny 85°F 85% f al se n o

overcast 83°F 86% f al se yes
sunny 80°F 90% true n o

overcast 72°F 90% true yes
r a iny 71°F 91% t r ue n o
sunny 72°F 95% f al se n o
r a iny 70°F 96% false yes

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

8

Heuristic Evaluation Functions

Notation:
P ... the total number of positive examples in training data TD
N ...the total number of negative examples in training data TD

r’ ... the current (incomplete) rule
p’ ... the number of positive examples covered by r’

n’ ... the number of negative examples covered by r’

r ... the rule resulting from adding a condition to r’

p ... the number of positive examples covered by r
n ... the number of negative examples covered by r

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

9

Heuristic Evaluation Functions

NP
N

np
n

NP
P

np
p

np

n

np

p
rCE

np

n

np

n

np

p

np

p
rE

rPrIC

np

p
rP

np
NP

nNp
rA

prC

+

+

+

+

+
−

+
−=

++
−

++
−=

−=
+

=

−≅
+

−+=

=

22

22

2

loglog)(:Entropy Cross

loglog)(:Entropy

)(log)(:Contentn Informatio

)(:Purity

)(
)(:Accuracy

)(:Coverage Positive

Basic Heuristics

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

10

Heuristic Evaluation Functions

Basic Heuristics (2)

()()
()()

))'()()(()(:Gainn Informatio Weighted

''
:Gain Coverage

)(1)(1
)(:nCorrelatio

)(:Estimate

2

1
)(:Estimate Laplace

''

2
''

)(2
''
''

''
)(

''
''

''

rICrICrCrWIG
N

nn

P

pp
CG(r)

rCorr

mnp

mp
rMm

np

p
rLAP

ppfnnntn

np
fntnnp

np
np

np
fntnnp

np
np

np
nfntnp

NP
P

−−=

−−−=

−−

−
=

++
+

=−

++
+=

−=−=

+
+−+

+
−

+
+−+

+
−

+
−−+

+

HeuristicsGain

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

11

Overfitting Avoidance: Pre-Pruning

Basic ideas

• Stop refining a rule although it is still inconsistent (i.e. covers neg. instances)

• Stop adding new rules although some positive instances are still not covered.

Basic method

• Modify stopping criteria RuleSetStopCrit, RuleStopCrit in LearnRules et al.

Commonly used criteria

• Minimum Purity: If the best next rule that can be found is below a specified
purity threshold (Purity(r) < ε), stop adding rules (⇒ RuleSetStopCrit)

• Encoding Length Restriction: Number of bits needed to encode a rule must
be less than number of bits needed to code the covered examples. I.e., stop
refining a rule when it would become too complex (⇒ RuleStopCrit)

• Significance Test: Stop adding conditions to a rule if none of the conditions
shows a pre-specified minimum correlation with the class labels, similar to
pre-pruning via X2 in DT slides (⇒ RuleStopCrit)

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

12

Overfitting Avoidance: Post-Pruning

Basic idea

First learn a (possibly large) set of (possibly complex) rules that fit the training
data well; then gradually simpli fy the rule set by

• Dropping conditions in rules (⇒ simpli fying/generalizing the rules)

• Dropping entire rules (⇒ simpli fying/generalizing the model)

A standard method: Reduced Error Pruning (~ DTs)

• Split training set into a growing set (e.g., 70%) and a pruning set

• Learn theory from growing set

• Simpli fy theory stepwise

Consider dropping conditions and dropping rules. Always perform (greedily)
the simplification step that produces the greatest improvement in e.g. accuracy
on the pruning set until no step improves the rule set anymore.

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

13

Reduced Error Pruning for Rule Learning

Reduced Error Pruning

procedure REP(TD, SplitRatio)

SplitExamples(SplitRatio, TD, GrowingSet, PruningSet);

Model := LearnRules(GrowingSet);

NewModel := BestSimpli fication(Model, PruningSet);

while Accuracy(NewModel, PruningSet) ≥ Accuracy(Model, PruningSet)

Model := NewModel;

NewModel := BestSimpli fication(Model, PruningSet);

endwhile;

return (Model);

Further improvements on REP (which has a worst-case complexity of O(n4))

• Incremental REP (IREP): Prune each rule separately, removing covered
examples from GrowingSet and PruningSet. Remaining instances are
redistributed into new Growing/PruningSet. Stop when predictive accuracy on
PruningSet is below baseline accuracy (i.e. accuracy of the empty rule ZeroR)

• Repeated Incremental Pruning to Produce Error Reduction (RIPPER):
Optimized version of IREP which runs the learning process multiple times.

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

14

Multi-Class Learning Tasks

Two-class Rule Learning is not symmetric under class permutation!

• E.g. for the weather dataset, learning a rule set for yes=positive vs.
no=negative examples is a different learning task from yes=negative vs.
no=positive examples! In one case, we learn a rule set predicting Play=yes, in
the other case we learn a rule set predicting Play=no. These will certainly
differ, depending on how complex these two sets are.

• Most other learners (Linear Methods, Instance-Based Learning, Bayesian
Methods and Decision Tree Learning) are symmetric under class permutation.

This behaviour of Rule Learning is clearly undesirable. We would like to get
the same ruleset in both cases. The simplest way to achieve this in the two-
class case is to combine both rule sets. This is equivalent to One-Against-All
as we will see shortly.

For learning tasks with more than two classes, there are several ways to map
the learning tasks to multiple binary representations.

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

15

Unordered vs. Ordered Rule Sets

Unordered Rule Set

• Rules can be applied in any order.

• Disjunction of conjuctive conditions to belong to a class = Disjunctive Normal
Form (DNF). In real li fe, rules may overlap and conflict!

Ordered Rule Set (=ordered decision list)

• Rules must be applied in the given order.

• First rule matching an example predicts the classification.

• Cascade of If-Then-Else Statements

(Outlook = overcast) ⇒ Play? = yes
(Outlook = sunny) and (Humidity < 75) ⇒ Play? = yes
(Outlook = rain) and (Windy = false) ⇒ Play? = yes
(Outlook = sunny) and (Humidity ≥ 75) ⇒ Play? = no
(Outlook = rain) and (Windy = true) ⇒ Play? = no

(Outlook = sunny) and (Humidity ≥ 75) ⇒ Play? =no
(Outlook = rain) and (Windy = true) ⇒ Play? = no
⇒ Play? = yes

Default rule

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

16

Unordered Rule Sets: One Against All

A strategy for learning an unordered rule set in multiclass
learning tasks: Learn rules for one class at a time,

against all others.

procedure LearnOneVsAll(TD, Classes)

Model := {} ;

foreach c in Classes

Pos := { xi ∈ TD | yi = c} ;

Neg := { xi ∈ TD | yi ≠ c} ;

Rules := LearnRules(c,Pos,Neg);

Model := Model ∪ Rules;

endfor;

return(Model);

Most common approach to map multiclass to binary learning tasks.
Also applicable to non-rule learners (e.g. Linear and Logistic Regression)

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

17

Unordered Rule Sets: One Against All

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

18

Ordered Rule Sets: One Against Rest

A strategy for learning an ordered rule set in multiclass
learning tasks: Learn rules for one class at a time,

against the remaining ones.
procedure LearnOneVsRest(TD, Classes)

Model := {} ; RemainingClasses := Classes; Examples=TD;

foreach c in Classes

if |RemainingClasses| =1

then Rules := { => c } // ← create default rule

else

Pos := { xi ∈ Examples | yi = c} ;

Neg := { xi ∈ Examples | yi ≠ c} ;

Rules := LearnRules(c,Pos,Neg);

endif

Model := Model ∪ Rules;

Examples := Examples \ { xi ∈ Examples | yi = c} ;

RemainingClasses := RemainingClasses \ { c} ;

endfor; return(Model);

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

19

Ordered Rule Sets: One Against Rest

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

20

Round-Robin Rule Learning

A strategy to learn Ordered and Unordered Rule Sets in
multiclass learning tasks: Round Robin Rule Learning

procedure LearnRoundRobin(TD, Classes)

Model := {} ;

foreach c in Classes

foreach d in Classes \ { c}

Pos := { xi ∈ TD | yi = c} ;

Neg := { xi ∈ TD | yi = d} ;

Rules := LearnRules(c,Pos,Neg);

Model := Model ∪ Rules;

end;

endfor; return(Model);

Another approach to map multiclass to binary learning tasks. Applicable to
non-rule learners (e.g. used internally in most SVM algorithms)

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

21

Round-Robin Rule Learning

...

...

...

...

Learn rules to discriminate
each combination of
classes, ignoring examples
from all other classes.

For learning unordered
rulesets, learn all
combinations as shown.

For learning ordered
rulesets, learn only
combinations above the
diagonal (i.e. learn only
classes ci vs cj where i<j)

