Inductive Rule Learning

Univ.-Lektor Dr.techn. Alexander K. Seewald
Osterrei chisches Forschungsinstitut
far Artificia Intelligence

© Alexander K. Seevald
aex@seavald.at / alex.seevald.at

Revisited: How to improve on 1R?

How to reduce 1R's bias/ increase its complexity?

» Divide-and-Conquer: Apply algorithm recursively! Choose best attribute at
top and then reaursively create rules for eadh subset instead of just counting
the most common class Repeat until "pure" (=only examples of the same
class). This credes a decision tree of attribute and class values.

[1 Decision TreeLearning (aswe drealy saw)

Another idea:

o Separate-and-Conquer: Learn best rule for a subset of training data, remove
both positive examples which are arrectly classified and those negative
examples erroneoudy classfied as positive (latter examples should number
few or none). Apply this algorithm reaursively until very few or no positive
examples remain. This creates arule set for classification.

« Not as efficient as divide-and-conquer, but has other advantages. More
compad than decison trees, a modular and easly understandable
representation and the ability to learn partial models.

[1 Inductive Rule Learning

© Alexander K. Seevald
aex@seavald.at / alex.seevald.at

Rule Sets- Bias & Variance

3 Hypothesis Space and Bias of Classification Rules
A2 - - -
— - + —
- + — 1' Kl
-4 EE 7 RULE 1
- | g Alz321&
- - - + + +
+_ - . i+ & + r - A< TR &
- T = + + A226.2
6.2 - - ToF + r_ T -t => Class is +
- - + +
+ + * + _ z -
— + -
-+ _ __ +
+ + -t 4+ oo- -
+ - - - + _ _ _ ¥
+ + - - - -, v 3 +
+ . 1 + _ s ¥ _ _ - b
+ - * i _ =+ - "'_+ _
+ - - - - +
f + * *
- i L . - RULE 2:
[— - - + - —_ [—
- - - - . . - * 4 Al23 &
-+ ¥ i + ++ _ - + - Al 53 &
Ly - + - - . A252.9
- + + + - .
-, = F + * * == Class is +
3 32 53 Al

Low bias, high variance. Concept boundaries are axis-paralld
hyperrectangles (see above), one for each rule within the ruleset.

© Alexander K. Seevald
aex@seavald.at / alex.seevald.at

Separate-And-Conquer Rule Learning

L earning Rule Sets: Sequential Set Covering Algorithm

procedure LeanRules(c,TD)
Rules:={}; Pos:={x, O TD |y, = c};
Neg:={x, O TD |y, #c};
repeat
Rule := FindBestRule(c,Pos,Neg);
Pos := Pos\ Covers(Rule,Pos);
Neg := Neg \ Covers(Rule, Neg);
Rules := Rules [Rule;
until RuleSetStopCrit(Rules,Pos,Neg);
return (Rules);

procedur e FindBestRule(c,Pos,Neg)
Rules:={ [J c} /I — creaedefault rule
while not RuleStopCrit(Rule,Pos,Neg) do
Rule := Rule O FindBestConditi on(Pos,Neg);
Pos := Covers(Rule,Pos);
Neg := Covers(Rule,Neg);
endwhile; return (Rule);

Simplest stopping criterion 1.

RuleSetStopCrit = trueif all
positive examples are cwvered by
the aurrent rule set, i.e. Pos = {}

Simplest stopping criterion 2:

RuleStopCrit = trueif therule
covers no more negative
examples, i.e.,, Neg ={} . Such a
ruleis called consistent.

A rule covers an example if the conditions of the rule match the atribute values
of the example. Rules always predict the positive class

© Alexander K. Seevald
aex@seavald.at / alex.seevald.at

How to find the best rule?

Given set of positive / negative examples, find best rule (=set of conditions) that

Covers many positive examples
Covers few or none negative examples
|sas smple & possble (Ockham's razor)

Exhaustive seach is impossble since this would have to consider all possible
subsets of rule conditions (nP for p nominal attributes each having n-1 possble
values). Heuristic search is needed, but gives no guarantee of best solution.

General search directions

Bottom-up (specific-to-general)

Start with a very long list of conditions (e.g. the complete description of one
positi ve example) and delete conditions one by one (step-wise generali zation)

Top-down (general-to-spedfic)
Start with empty rule (no conditions) and add conditions one by one (step-wise
spedaali zation). Similar to our version of FindBestRule.

© Alexander K. Seevald
aex@seavald.at / alex.seevald.at

Heuristic Search Algorithms

Hill-climbing

At eah step, add or drop the wndition (from all possble nditions) that
maximises sme local heuristic evaluation measure.

Problem: short-sighted and greedy.

Beam search

Always keep a list of n alternative refinements; expand the currently best one
(according to some locd heuristic). Explores larger portion of search space
and can find globall y better solutions. Less $iort-sighted, but still greedy.

Best-first search
Explore al possble solutions, always focusing on the most promising first. If

unrestricted, explores full search space Must be acompanied by search
pruning. Still inefficient, but can guaranteeto find best solution.

M ost commonly used

Top-down search with hill -climbing (as in FindBestRule) or beam search.

© Alexander K. Seevald
aex@seavald.at / alex.seevald.at

How to find best condition to add?

General approach for FindBestCondition: test all |Outlook| T | H |Windy|Play?

possble conditions and choose the best one |overcast|64°F | 65% | true | Yyes

according to heuristic, e.g. max.ent. & (p>n). rainy |65°F |70% | true | no
Example: Weather dataset, yes=positive examples | _Sunny |69°F | 70% | false | yes
(target), no=negative examples. sunny | 75°F | 70% | true | yes

overcast| 81°F [75% | false | yes
rainy |68°F |80% | false | yes

o Partial rule {outlook=rainy [yes}. Covers 5
examples: 3 positive and 2 negative. :
rainy |75°F|80% | false | yes

Possble conditions for improvements: ;
o sunny | 85°F [85% | false | no
Temp <66.5 (0+,1-) Humidity 275 (3+,1-) overcast | 83°F | 86% | false | yes

Temp = 66.5 (3+,1-) Humidity < 75 (0+,1-) sunny | 80°F | 90% | true | no
Temp < 70.5 (2+,1-) Windy=false (3+,0-) overcast 72°F [90% | true | Yes
Temp=>705(1+1-) Windy=true (0+2-) rainy | T1F |91% | true | no

sunny | 72°F | 95% | false | no
rainy |70°F |96% | false | yes

Temp < 73.0 (2+,2-)
Temp = 73.0 (1+,0)

o Choose Windy=false. Refined rule is now
{outlook=rainy & windy=false [yes}. Covers
3 positive and 0 negative examples.

[1 Wehavefound a consistent ruleand return it

© Alexander K. Seevald
aex@seavald.at / alex.seevald.at

Heuristic Evaluation Functions

Notation:
P ... thetotal number of positive examplesin training cata TD
N ...the total number of negative examplesin training cata TD

' ...the current (incomplete) rule
P ...the number of positive examples covered byr’
n' ...the number of negative examples covered byr’

I ...theruleresulting from adding a condtiontor’
P ... the number of positive examples covered byr
n ... the number of negative examples covered byr

© Alexander K. Seevald
aex@seavald.at / alex.seevald.at

Heuristic Evaluation Functions

Basic Heuristics

PositiveCoverage C(r)=p

_pt(N-n)
Accuracy. A(r) = [Ip—n
Y. (r) Y P
Purity: P(r) = P
p+n
Informatian Content 1C(r) =-log, P(r)
_ P P n n
Entropy: E(r)=- lo lo
Py (r) 04N gzp+n 0+n gzp+n
P pp n o+
CrossEntropy: CE(r) = - log., 20 — log., 2"
py () p+n gZ PEN p+n gZ P-[:|N

© Alexander K. Seevald
aex@seavald.at / alex.seevald.at

Heuristic Evaluation Functions

Basic Heuristics (2)

LaplaceEstimate

m— Estimate

Correlation :

GainHeuristics

Coveragésain:

Weightedinformatian Gain: WIG(r) = —-C(r)(1C(r) —

+
LAP(r) = —P*1
p+n+2
m
M (r) — p P+N
p+n+m
p+tn—fn-n _ (p'—n'Xp+n—(tn+ fn))
Corr(r) = —2 Pt pon
+n—(tn+ fn)
(p+n) Xl g pin)
th=n'-n fn=p'-p
cory=P-—P_N=N
P N

1C(r))

© Alexander K. Seevald
aex@seavald.at / alex.seevald.at

10

Overfitting Avoidance: Pre-Pruning

Basic ideas
« Stoprefining arule dthoughiit is gill inconsistent (i.e. covers neg. instances)
e Stop adding new rules although some positive instances are still not covered.

Basic method
e Modify stopping criteria RuleSetSopCrit, RuleStopCrit in LearnRules et .

Commonly used criteria

e Minimum Purity: If the best next rule that can be found is below a speafied
purity threshold (Purity(r) <€), stop adding rules ([RuleSetStopCirit)

« Encoding Length Restriction: Number of bits needed to encode arule must
be less than number of bits needed to code the mvered examples. |.e., stop
refining a rule when it would become too complex (LI RuleStopCirit)

» Significance Test: Stop adding conditions to a rule if none of the conditions
shows a pre-specified minimum correlation with the dasslabels, similar to
pre-pruning viaX2in DT dides (O RuleStopCirit)

© Alexander K. Seevald 11
aex@seavald.at / alex.seevald.at

Overfitting Avoidance: Post-Pruning

Basic idea

First learn a (possbly large) set of (possbly complex) rules that fit the training
datawell; then gradually simplify the rule set by

» Dropping conditionsinrules (LJ simplifying/generalizing the rules)

» Dropping entire rules (I simplifying/generali zing the model)

A standard method: Reduced Error Pruning (~DTYS)
e Split training set into agrowing set (e.g., 70%) and a pruning set
* Lean theory from growing set
o Simplify theory stepwise
Consider dropping conditions and dropping rules. Always perform (greedily)

the ssmplification step that produces the greaest improvement in e.g. accuracy
on the pruning set until no step improves the rule set anymore.

© Alexander K. Seevald
aex@seavald.at / alex.seevald.at

12

Reduced Error Pruning for Rule Learning

Reduced Error Pruning

procedure REP(TD, SplitRatio)

SplitExamples(SplitRatio, TD, GrowingSet, PruningSet);

Model := LeanRules(GrowingSet);

NewModel := BestSimplification(Model, PruningSet);

while Accuracy(NewModel, PruningSet) = Accuracy(Model, PruningSet)
Model := NewModel;
NewModel := BestSimplification(Model, PruningSet);

endwhile;

return (Model);

Further improvements on REP (which has a wor st-case complexity of O(n%))

 Incremental REP (IREP): Prune e&h rule separately, removing covered
examples from GrowingSet and PruningSet. Remaining instances are
redistributed into new Growing/PruningSet. Stop when predictive accuracy on
PruningSet is below baseline acuracy (i.e. accuracy of the anpty rule ZeroR)

 Repeded Incrementa Pruning to Produce Error Reduction (RIPPER):
Optimized version of |REP which runsthe leaning processmultiple times.

© Alexander K. Seevald
aex@seavald.at / alex.seevald.at

13

Multi-Class L earning Tasks

Two-class Rule Learning isnot symmetric under class permutation!

E.g. for the wedher dataset, learning a rule set for yes=positive vs.
no=negative examples is a different leaning task from yes=negative vs.
no=positive examples! In one case, we learn arule set predicting Play=yes, in
the other case we lean a rule set predicting Play=no. These will certainly
diff er, depending on how complex these two sets are.

Most other leaners (Linear Methods, Instance-Based Learning, Bayesian
Methods and Decision TreeLeaning) are symmetric under class permutation.

This behaviour of Rule Learning is clealy undesirable. We would like to get
the same ruleset in both cases. The simplest way to adiieve this in the two-
class case is to combine both rule sets. This is equivalent to One-Against-All
aswe will see shortly.

For learning tasks with more than two classes, there are several ways to map
the learning tasks to multiple binary representations.

© Alexander K. Seevald 14
aex@seavald.at / alex.seevald.at

Unordered vs. Ordered Rule Sets

Unor dered Rule Set
* Rulescan be gplied in any order.

» Digunction of conjuctive conditions to belong to a dass = Digunctive Normal
Form (DNF). In real life, rules may overlap and confli ct!

Ordered Rule Set (=ordered decision list)

* Rulesmust be applied in the given order.

» First rule matching an example predicts the dassfication.
e Cascade of If-Then-Else Statements

Default rule

© Alexander K. Seevald 15
aex@seavald.at / alex.seevald.at

Unordered Rule Sets. One Against All

A strategy for learning an unordered rule set in multiclass
learning tasks: Learn rulesfor oneclassat atime,

against all others.

procedure LeanOneVsAIl(TD, Classes)
Model :={} ;
foreach cin Classes
Pos:={x, 0 TD |y, =c};
Neg:={x, 0 TD |y, #c};
Rules : = LeanRules(c,Pos,Neg);
Model := Model [Rules;
endfor;
return(Model);

M ost common approach to map multiclassto binary lear ning tasks.
Also applicableto non-rulelearners(e.g. Linear and L ogistic Regression)

© Alexander K. Seevald
aex@seavald.at / alex.seevald.at

16

One Against All

&
&
=
¥
@
)
©
S
C
D

=X
X

= Class
= (Class

vee AN woeen e

1)

= Class = +
> Class =+

) i 11 .

2)

) 11

17

© Alexander K. Seevald
aex@seavald.at / alex.seevald.at

Ordered Rule Sets: One Against Rest

A strategy for learning an ordered rule set in multiclass
learning tasks: Learn rulesfor oneclassat atime,

against the remaining ones.
procedur e LeanOneVsRest(TD, Classes)
Model :={} ; RemainingClasses : = Classes;, Examples=TD;
foreach cin Classes

iIf |RemainingClasses| =1

then Rules:={ =>c} // « creaedefault rule
else

Pos :={x; 1 Examples |y, = c};

Neg := {x, 0 Examples |y, # c};

Rules := LeanRules(c,Pos,Neg);
endif
Model := Model O Rules;
Examples := Examples\ {x, [0 Examples |y, = c};
RemainingClasses := RemainingClasses\ {c};

endfor; return(Model);

© Alexander K. Seevald
aex@seavald.at / alex.seevald.at

18

Ordered Rule Sets: One Against Rest

nﬂ' oo
o0 o O
ﬂn o

1) w.and......=>Class=X
w == Class=Xx
2) veres AN ouooe == Class = +
e == lass =+

=> must be executed in order!

n) =>(lass =0 (Default rule)

© Alexander K. Seevald
aex@seavald.at / alex.seevald.at

19

Round-Robin Rule L earning

A strategy to learn Ordered and Unordered Rule Sets in
multiclass lear ning tasks: Round Robin Rule Learning

procedur e LeanRoundRobin(TD, Classes)
Model :={} ;
foreach cin Classes
foreach din Classes\ { ¢}
Pos:={x, 0 TD |y, =c};
Neg :={x, O TD |y, = d};
Rules : = LeanRules(c,Pos,Neg);
Model := Model [Rules;
end;

endfor; return(Model);

Another approach to map multiclassto binary learning tasks. Applicableto
non-rulelearners(e.g. used internally in most SVM algorithms)

© Alexander K. Seevald 20
aex@seavald.at / alex.seevald.at

© Alexander K. Seevald
aex@seavald.at / alex.seevald.at

Round-Robin Rule L earning

Lean rules to discriminate
each combination of
classes, ignoring examples
from al other classes.

For learning unordered
rulesets, lean al
combinations as shown.

For leaning ordered
rulesets, learn only
combinations above the
diagonal (i.e. learn only
classes ¢ vs ¢ where <))

21

