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Common Problem with DTs: Overfitting

Outlook  Temp. Humidity Windy CLASS
sUny hot high false Don't Play
suniry hot high true Don't Play
overcast hot high false Play
raimn mild high false Play
raim cool normal false Play
rain cool normal true Don't Play
overcast  cool normal true Play
sUny mild high false Don't Play
suniry cool normal false Play
raim mild normal false Play
suniry mild normal true Play
. - overcast mild high true Play
Additional t.ralnlrlg overcast hot normal false Play
example with \ raim mild high true Don't Play
Incorrect class SHnny cool normal frue Don’t Play

outlook = sunny

| humidity = high: no (3)
| humidity = normal: yes (2)
outlook = overcast: ves (4)

outlook = rainy

| windy = TRUE: no (2)
| windy = FALSE: ves (3)

—— =

outlook = sunny

humidity = high: no (3)
humidity = normal
temperature = hot: ves (0)
temperature = mild: yes (1)
temperature = cool

| windy =TRUE: no (1)

| | windy = FALSE: ves (1)
outlook = overcast: ves (4)
outlook = rainy

| windy = TRUE: no (2)

| windy = FALSE: ves (3)
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How to avoid Overfitting for DTs

Pre-Pruning

Stop splitting a node further (even if it still contains examples of different classes,
and even if some dtributes are still available) if there seeansto be no statistically
significant correlation between attributes and classes

Post-Pruning

First construct (possbly complex) tree that is maximally consistent with the
training data (i.e., has minimum error on training data)

Then smplify the tree by cutting off branches and subtrees that seem harmful.

Effects of Pruning

« Simpler trees with lower accuracy on the training data but possibly higher
accuracy on new, unseen data.

» Improves handling o attribute and class noise
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Pre-Pruning

C=A?
p/n
Pre-Pruning: X2 Test ] %\V
(pronounced: Chi-Square) AN
C, C, C .. C
P/, PN, poing P/,

If A iscompletely irrelevant to the dass of an object in C, the expeded value of

pisp’'=p* |C)/|C| and the expected value of n, isn' =n * |C}/|C|, where p
and n are the number of positive resp. negative examples of the dass

The larger the differences |p,- p'| and |n;- n/'|, the smaller the likeli hood that
A iscompletely irrelevant.

K 2 -n 2
Statistic S= 'y PP + 00 s approximately X2 distributed with k-1 d.o.f.

Perform X2 test: Slarge enough? (Intuition: the smaller S, the higher the
probability that A isirrelevant to the class(i.e., classis independent of A))

Prune (stop refining anode) if thereisno relevant A at given confidencelevel
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Post-Pruning

Reduced Error Pruning (Pseudocode)

. Randomly split training examples TD into atraining set TS (usually 70%) and
a pruning (validation) set PS (usually 30%)

. Learn a (possibly complex) tree from TS that is as consistent with the data &
possble (i.e., that possbly overfits the data)

. Perform treesimplification step:

For eadh subtree T, of T, tentatively replace T, by amajority classled

. Compare the acuracy on PY(!) for all modified subtrees with accuracy of
origina T on PS

If thereisno T, that improves aacuracy on PS when removed: exit
Otherwise: remove (and replacewith leaf) T, with maximum improvement.

. Goto 3

Question: Why additional pruning set PS? Why not use original training set TD
for making pruning dedsions?
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Post-Pruning without Validation Set: PEP

Pessimistic Error Pruning (PEP)
(used in well-known C4.5 decision tree lear ner)

Replace subtree T, by amajority classled, if and only if
E+05<) J+L(T)/2+ SE
where...
> J  number of training set errors for subtree T; before replacing

E number of training set errors when replacing T, by aleaf (only for
those examples which are within the subtree T))

L(T;) total number of leavesin subtreeT,

\/(zJ+L(Ti)/2)(zK—(zJ+L(Ti)/2»
SE standard error: YK

> K number of examplesin subtree T, (=p,+n,=|C\|)

+ no ned for validation set - all training data can be used; very efficient
— heuristic is ad-hoc and not reasonably grounded in statistical theory
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Def.. Missing values

Missing values occur when values of some attributes are unknown for some
examples. Thiscan have a variety of reasons:

« not applicable - Attribute is not valid for current example; e.g. gender for legal
persons (companies), results of medical examinations which were not executed

« notvalid - Attribute valueisinvalid, e.g. due to data entry errors, errorsin data
conversion during preprocessing, or measurement errors. For example, the
attribute value of -12 for humidity (in percent).

e truly missing - Attribute is valid but has not been measured; e.g. due to
measurement device eror, people choosing not to answer some questionsin a
guestionnaire (income) etc..

e unknown - It is unknown why the value has been marked as missng, usually
due to insufficient documentation of the data deaning process

Missing values are usually encoded by ?
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How totreat MV?

Common solutions

|gnore examples that are incompletely described (i.e. have @ least one MV)

[1 waste of valuable data

Introduce missing as a special value and treat it like the other attribute values
[ useful for not applicable MV's, but can leal to paradoxical situations

For Decision Trees, split i ncomplete example with MV s into virtual examples:
— Compute probabili ty (rel.frequency) pr, for each value v, of attribute A.
— Assgn fractional example (weight=pr;) to each corresponding branch

— Clasgfication o new, incomplete examples works analogously: when
encountering a split on an attribute that is missing, propagate example
through all subtreeand returned pr,-weighted sum of classes.

For Bayesian methods, MVs are modelled as an uwniform probability
distribution over al possible values of a missng attribute.

Complete incomplete examples by repladng ? with a default value (e.g. the
most common value of this attribute in the training data, or mean/mode of
numerical attributes). Simplest approach, which explainsitswidespread use
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Bayesian Methods & Bayes Theorem

Bayesian M ethods provide the basis for probabilistic reasoning:

 Theoretical framework for madine leaning, clasgfication, knowledge
representation and analysis.

» Allowsto integrate uncertain and partial domain knowledge
» Direct modeling of uncertainty
» Easily handles noisy and incomplete data sets with MV's

One arnerstone of Bayesian MethodsisBayes Rule;
P(TD| f)P(f)
P(TD)

The probability of function/model f given training data TD is equal to the
probability of TD given f multiplied by the (prior) probability of h divided by
the (prior) probability of TD. All clasgfication methods can be seen as
estimating Bayes' Rule, with different techniquesto estimate P(TDIf).

P(f |TD) =
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Maximum Likelihood

Among all f from Concept Space CS, choose f which has highest probability given
training data TD. Thisisthe maximum a posteriori (M AP) mode!:

foer =argmaxP(f |TD) :argmaxP(rD| P(t) =argmaxP(TD | f)P(f)
focs focs P(TD) focs

In some cases, we can asume every f [ CS to be aqually probable. In that case,
the aove smplifiesto the maximum likelihood (ML) model:

fy. =argmaxP(TD | f)

fOCS

Example: Cancer diagnosis
Two hypotheses: cancer, — cancer (|CS|=2)
Diagnostic test for cancer with two outcomes. L1 =+, [ =—

Known prob.: P(cancer) = 0.008 P(-cancer) = 0.992
(sensitivity)  P(0J |cancer) = 0.98 P(L |cancer) = 0.02

P(L] | ~cancer)= 0.03 P(O | ~cancer)=  0.97 (specificity)
P(cance | ) = P(0J | cancer)P(cancer) =0.98 * 0.008 = 0.0078 (21%)

P(-cancer | )= P(IJ | = cancer)P(-cancer) =0.03 * 0.992 = 0.0298 (/9% ,MAP)
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Basic Probability For mulas

Product rule: probability of aconjunctian of eventsA andB (= A AND B)
P(AOB)=P(A|B)P(B) =P(B|A)P(A)

Sum rule: probability of adisjunctian of twoeventsA andB (= A OR B)
P(AOB) =P(A) +P(B)-P(ALOB)

Bayes Theorem :relatingposteriorandprior probabiliies

p(f [TD) =2 i(';é';(f)

Theorem of total probability :if eventsA,,...,A  aremutuallyexclusive

with iP(Ai) =10 P(B) = Z P(B|A)P(A)
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Bayes Optimal Classifier

So far, we have seached for the best f L1 CS. However, it is possble to do better
by combining all functions/modelsin CS, weighted by posterior probabilities:

Bayes, ;. =argmax Z P(Cl, | f)P(f, |TD)
CIjEICIass f.0CS
where Classis the set of possble classs, TD = training data, CS = concept space.
Thisisthe Bayes Optimal Classifier.

Advantages

o Optimality: No ather classficaion method with same CS and same prior
knowledge can outperform this method (on average). This method maximizes
the probability that the new instance is classified correctly, given the avail able
data TD, concept space CS and posterior prob. over all the hypothesesf.

* Predictions correspond to afunction/model not in CS — more general than CS!
Disadvantages

* Needsto sumover al possble functionsf. Very costly and often intradable.

» Probabiliti es are usually unknown, and some of them are very hard to estimate.
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Gibbs Algorithm & Naive Bayes

Gibbs Algorithm is a more efficient but less optimal classfier. Under certain
conditions it has at most twice the error rate of the optimal Bayes classfier.
However, it is gill very inefficient.

Gibbs Algorithm

1. Choose afunction f from CS at random, according to posterior probability
distribution over CS (i.e. P(f [TD))

2. Usef to predict the dasgfication of next instance X.

A very efficient classfier is obtained by assuming the dtributes to be
conditionally independent (P(A||A)=P(A) for Ui ,j). Thisis Naive Bayes:

Bayes,, .= argmaxP(CIj)rl P(a |Cl))
Oi

CIJ- [Class

P(Cl,) and P(a|Cl) can be efficiently estimated from training data TD by
counting. Thisis a commonly used classfier in madine leaning, and works
reasonably well even when the conditional independence asumption is
violated.
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Example: Weather dataset

Classify weather dataset with Naive Bayes Outlook| T | H |Windy|Play?
» Estimate P(Cl)): P(yes)=9/14, P(no)=5/14 overcast |64°F | 65% | true | yes

0 0
. Estimate P(a|Cl), i.e. probability of attribute i [/eELIZELIH | ue L yes

having value g, given classof Cl.: overcest |BI°F | 75% | Talse | yes
9 4.9 I overcast |83°F | 86% | false | yes

Play? Play? rainy |68°F|80% | false | yes

Outlook| yes no Windy | yes no rainy |70°F|96% | false | yes
overcest| 4 |0 true | 3 |3 rainy |75°F|80% | false | yes
rainy | 3 |2 fase | 6 | 2 rainy [65°F|70% | true | no
sunry | 2 |3 rainy |[71°F|91% | true | no
P(outlook=overcast | yes)=4/9 P(w.=t | yes)=3/9 sunny |[69°F|70% | false | yes
P(outlook=rainy  |yes)=3/9 P(w.=f |yes)=6/9 sunny |75°F | 70% | true | yes
_ B sunny [72°F|95% | false | no
P(outlook=sunny | yes)= 2/9 sunny [80°F|90% | true | no
P(outlook=overcast| no) = 0/5 P(w.=t|no) =3/5 sunny |85°F|85% | false | no

P(outlook=rainy |no) =2/5 P(w.=f|no)=2/5
P(outlook=sunny |no) = 3/5

Problem: Estimates may be zeo [1 P(no | outlook=overcast) would always be 0.
[0 Laplace arrection: Use (a+1)/(b+1) instead of ab, e.g. 1/6 instead of O/5.
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e For

Example: Weather dataset (2)

guantitative

/[ numericd

variables,

probabilities cannot be determined by counting.
Probability density functions must be defined.
Common assumption: Vaues are normally
distributed. Then, arithmetic mean and standard
deviation define a norma probability density

function as foll ows;

P(A =x|Cl,) =

\ 21 6°

1

=

(X—p)?

where 1 and 62 are dhosen depending on Cl; and A,
E.g. for P(temp.=x | no) use u=74.6 and 0%=62.3;
for P(hum.=x | yes) use p=79.1 and 06°=104.4 etc..

Play?
Temp.| yeS no
M 73.0|74.6
o |38.0/62.3

Play?
Hum Y&S  no
U | 791 |86.2
0° |104.4|94.7
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Outlook| T H |Windy|Play?
overcast [64°F|65% | true | yes
rainy |68°F|80% | false | yes
sunny [69°F|70% | false | yes
rainy |70°F|96% | false | yes
overcast [72°F|90% | true | yes
sunny [75°F|70% | true | yes
rainy |75°F|80% | false | yes
overcast |81°F| 75% | false | yes
overcast |83°F|86% | false | yes
rainy |65°F|70% | true | no
rainy |71°F|{91% | true | no
sunny [72°F|95% | false | no
sunny [80°F|{90% | true | no
sunny [85°F|85% | false | no
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Example: Weather dataset (3)

1
1 ‘F(X‘M)z

\ 21 67

Classify example x,, = { outlook=overcast, temp.=18°F, hum.=53%, windy=fal se}
(using ssimple Laplace correction for probabiliti es, e.g. 10/15 instead of 9/14 etc.)

P(yes| x,) = P(yes)P(outlook = overcast | yes)P(temp. =18°F | yes)P(hum =53% | yes)

_ _ -1 (18-730)2 -t (53-79.1)2 _
P(W — f |yeS) — %%(m @ 2380 )(m e zlou )% —

=~ 0.3333.35[110*°)(1.495[110°)0.7 =1.167C1L0 *

P(no| x,) = P(no)P(outlook = overcast | no) P(temp. =18°F | no) P(hum = 53% | no)
P(w.= f [n0) = &1 (e ste 70"y 1 g a5 62"y
= 0.067(3.45110™"°)(1.217110*)0.5=1.407[10**

P(A =X|Cl;) =

olw

[1 predict Play=no.

Notice that since P(TD) is not known, these ae not yet red probabilities (i.e. they
do not sum to 1), but have to be normali zed: P(no|x,)=99.992%, P(yes|x,)=0.008%
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Bayesian Belief Networks

Nalve Bayes: Asaumes conditiona independence of al attribute. If this is true,
then it outputs the optimal Bayes classification. However, in many cases this

assumption isoverly restrictive.

[1 Bayesian Networks: Allow arbitrary conditional dependence. Dependency
information can be learned from training data, or specified as background

knowledge. Usually visualized as directed acyclic graph (DAG)

E.g. given aburglary, what is the prob.

that John cdl s?

P(J|B)=?

P(A|B) = P(B)P(-E)(0.94) + P(B)P(E)(0.95)
P(A|B) =1(0.998(0.94) +1(0.002)(0.95)
P(A|B)=0.94

P(J | B) = P(A|B)(0.9) + P(~A| B)(0.05)

:((;J8|SB) =(0.94)(0.9) +(0.06)(0.05) g E‘é’

Exact computation of complex queriesis NP-hard(!)

meTA|e
=
=
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Common Preprocessing Steps

Some lear ning algorithms only accept quantitative X
o 2vauesl] mapto one quantitative variable & 0/1 or -1/1

 nvaues [l map to n quantitative binary variables, only one of which is on
(=1). Also called 1-of-n coding, dummy variables.

Some lear ning algorithms only accept quantitative Y
« 2vauesl] map as above, and map the prediction Y back via ssimple treshold
(0.5for O/l and O for -1/1)

 nvaues ] multiple models have to be leaned; e.g. map as above and use one
binary variable for each of n models. More complex mappings are possble.

Some |ear ning algorithms do not accept quantitative X or Y
» Discretize valuesto a qualitative variable with ordinal scde
« Someinformation isinevitably lost - performance does not necessarily suffer.
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