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Abstract

In this paper we describe new experiments with
the ensemble learning method Stacking. The cen-
tral question in these experiments was whether
meta-learning methods can be used to accurately
predict various aspects of Stacking’s behaviour.
The resulting contributions of this paper are two-
fold: When learning to predict the accuracy of
stacked classifiers, we found that the single most
important feature is the accuracy of the best base
classifier. A simple linear model involving just
this feature turns out to be surprisingly accu-
rate. The associated regression line has a gra-
dient larger than one, hinting that, in the limit,
Stacking is indeed better than the best included
base classifier. When learning to predict signifi-
cant differences between Stacking and three other
ensemble learning methods, we have found sim-
ple models, all but one of which are based on sin-
gle features which can be efficiently computed
directly from the dataset. These models can be
used to decide in advance which ensemble learn-
ing method to use on a given dataset, since nei-
ther of them is always the best choice.

1. Introduction

Meta-learning® focusses on predicting the right algorithm
for a particular problem based on characteristics of the
dataset (Brazdil, Gama & Henery, 1994) or based on
the performance of other, simpler learning algorithms
(Pfahringer, Bensusan & Giraud-Carrier, 2000). Here we
are concerned with meta-learning of ensemble learning
schemes or meta-classification schemes. Stacking can be
considered the best-known such scheme and was intro-
duced in (Wolpert, 1992). We take a more general view
of meta-learning and use it to predict two aspects of Stack-
ing’s behaviour.

First, we investigated predicting the accuracy of stacked
classifiers, to see which factors contribute to its perfor-
mance. For this, we considered a variety of features, com-

1The term Meta-Learning is also used elsewhere to refer to
ensemble learning schemes — so in a way we achieve to relate
both aspects of this term in our paper.

puted either directly from the dataset or from the classifiers
which were part of the ensemble. Considering the unsatis-
factory state of this field (Pfahringer, Bensusan & Giraud-
Carrier, 2000; Bensusan & Kalousis, 2001), we were sur-
prised to find that a single feature is able to predict the ac-
curacy surprisingly well.

Afterwards we aimed to decide via meta-learning the ques-
tion which meta-classification scheme to apply to the
dataset at hand. Trying to predict the best scheme may fail
because this does not take into account that more than one
best scheme may exist — even all considered classifiers may
be statistically indistinguishable on some datasets! Our
approach takes this into account by constructing binary
problems concerned with finding which one of two meta-
classification schemes is significantly better than the other
while excluding those examples where both are statistically
indistinguishable — since in that case, both answers can be
considered correct?. Since we focus on Stacking in this pa-
per, we do not consider all possible pairs of two schemes
but only those three involving Stacking.

1.1 Introducing Meta-Classification Schemes

When faced with the decision “Which algorithm will be
most accurate on my classification problem?”, the predom-
inant approach is to estimate the accuracy of the candidate
algorithms on the problem and select the one that appears
to be most accurate. Schaffer (Schaffer, 1993) has inves-
tigated this approach in a small study with three learning
algorithms on five UCI datasets. His conclusions are that
on the one hand this procedure is on average better than
working with a single learning algorithm, but, on the other
hand, the cross-validation procedure often picks the wrong
base algorithm on individual problems. This problem is ex-
pected to become more severe with an increasing number
of classifiers.

As a cross-validation basically computes a prediction for
each example in the training set, it was soon realized that
this information could be used in more elaborate ways than
simply counting the number of correct and incorrect pre-
dictions. The best-known such meta-classification scheme

2Earlier experiments using an additional class for this case
were unsuccessful — this may be explained by too much class
overlap, see Figure 1.



Table 1. The used datasets with number of classes and examples,
discrete and continuous attributes, baseline accuracy (%) and en-
tropy in bits per example (Kononenko & Bratko, 1991).

Dataset cl Inst | disc | cont bL E
audiology 24 226 69 0| 2522 | 351
autos 7 205 10 16 | 32.68 | 2.29
balance-scale 3 625 0 4 | 4576 | 1.32
breast-cancer 2 286 10 0 | 70.28 | 0.88
breast-w 2 699 0 9 | 6552 | 0.93
colic 2 368 16 7 | 63.04 | 0.95
credit-a 2 690 9 6 | 55.51 | 0.99
credit-g 2 | 1000 13 7 | 70.00 | 0.88
diabetes 2 768 0 8 | 65.10 | 0.93
glass 7 214 0 9 | 3551 | 2.19
heart-c 5 303 7 6 | 54.46 | 1.01
heart-h 5 294 7 6 | 63.95 | 0.96
heart-statlog 2 270 0 13 | 55.56 | 0.99
hepatitis 2 155 13 6 | 79.35 | 0.74
ionosphere 2 351 0 34| 64.10 | 0.94
iris 3 150 0 4 | 3333 | 158
labor 2 57 8 8 | 6491 | 0.94
lymph 4| 148 | 15 3| 5473 | 1.24
primary-t. 22 339 17 0 | 2478 | 3.68
segment 7 | 2310 0 19 | 14.29 | 281
sonar 2 208 0 60 | 53.37 | 1.00
soybean 19 683 35 0| 1347 | 3.84
vehicle 4 846 0 18 | 25.41 | 2.00
vote 2 435 16 0 | 61.38 | 0.96
vowel 11 990 3 10 9.09 | 3.46
200 7 101 16 2| 4059 | 241

is the family of stacking algorithms (Wolpert, 1992). The
idea behind stacking is to use the predictions of the original
classifiers as attributes in a new training set that keeps the
original class labels. Essentially, Stacking combines output
from a set of base classifiers via one meta classifier.

A straightforward extension of this approach is using class
probability distributions of base classifiers® which convey
not only prediction information, but also confidence for all
classes. This was found to be superior in (Ting & Wit-
ten, 1999) when used with multi-response linear regression
(MLR) as meta classifier. We used this extension in our ex-
periments.

We will now describe our experimental setup and our two
sets of features describing dataset characteristics and base
classifier accuracy & diversity. Then we will give results
for predicting the accuracy of stacked classifiers, followed
by meta-learning of significant differences. Afterwards we
give a short overview on related meta-learning research and
conclude this paper.

2. Experimental setup

In our experiments, we used twenty-six datasets from the
UCI machine learning repository (Blake & Merz, 1998).

SEvery prediction is replaced by a vector of probabilities, one
for each class.

Details can be found in Table 1. We used Stacking with all
of the following seven base classifiers for our experiments,
which were chosen in an attempt to maximize diversity. All
algorithms were taken from the Waikato Environment for
Knowledge Analysis (WEKA%), Version 3-1-8.

e DecisionTable: a decision table learner.

¢ IBk: the IBK instance-based learner using K=1 nearest
neighbors. K=1 was chosen to offset the K* algorithm
with a maximally local learner.

e J48: a Java port of C4.5 Release 8 (Quinlan, 1993)
¢ KernelDensity: a simple kernel density classifier.

e KStar: the K* instance-based learner (Cleary & Trigg,
1995), using all nearest neighbors and an entropy-
based distance function.

e MLR: a multi-class learner based on linear regression,
which tries to separate each class from all other classes
by linear discrimination (Multi-response Linear Re-
gression)

o NaiveBayes: the Naive Bayes classifier using multiple
kernel density estimation for numeric attributes.

We used the following four meta-classification schemes.

e Stacking is the stacking algorithm as implemented in
WEKA, which follows (Ting & Witten, 1999). It con-
structs the meta dataset by adding the entire predicted
class probability distribution instead of only the most
likely class. We used MLR as the level 1 learner.®

e X-Val chooses the best base classifier on each fold by
an internal ten-fold CV. This is just the selection by
cross-validation we mentioned in the beginning.

e Voting is a straight-forward adaptation of voting for
distribution classifiers. Instead of giving its entire
vote to the class it considers to be most likely, each
classifier is allowed to split its vote according to the
base classifier’s estimate of the class probability dis-
tribution for the example. l.e. the mean class distri-
bution of all classifiers is calculated. It is the only
scheme which does not use an expensive internal
cross-validation.

¢ Grading is an implementation of the grading algorithm
evaluated in (Seewald & Firnkranz, 2001) which uses
IBk (K = 10) as meta-classifier. Basically, Grading
trains a meta classifier for each base classifier which

“4The Java source code of WEKA has been made available at
WWW.CS. waikato .ac.nz.

SRelatively global and smooth level-1 (=meta) generalizers
should perform well (Wolpert, 1992; Ting & Witten, 1999).



tries to predict when its base classifier fails. This de-
cision is based on the dataset’s attributes. A weighted
voting of the base classifiers’ prediction gives the final
class prediction. The voting weight is the confidence
for a correct prediction of a base classifier, which is
estimated by its associated meta classifier.

We used seventeen dataset-related features which uniquely
characterize the dataset. These were inspired by the Stat-
LOG project (Brazdil, Gama & Henery, 1994) and reim-
plemented in WEKA.

o Inst, the number of examples.

o log(Inst) which is the natural logarithm of Inst.

o Classes, the number of classes.

o Attrs, the number of attributes (excluding the class)

e PropNomaAttrs, number of nominal attributes as a pro-
portion of NumAttrs.

e PropContAttrs, number of numeric attributes as a pro-
portion of NumAttrs.

e PropBinAttrs, number of binary-valued nominal at-
tributes as a proportion of NumaAttrs.

o ClassEntropy, the entropy of the class attribute.
¢ AttrEntropy, the entropy of all attributes.

e MutualEntropy, the mutual entropy of class and at-
tributes.

e EquivAttrs, the equivalent number of attributes,
ClassEntropy
MutualEntropy

H EquivAttrs

o S/N, the signal-to-noise ratio.

¢ MeanAbsCorr, the mean absolute pairwise correlation
between all different pairs of numeric attributes.

o MeanAbsSkew, the mean absolute skew of all numeric
attributes.

o MeanAbsKurtosis, the mean absolute kurtosis of all
numeric attributes.

o defAcc, the default accuracy, i.e. the proportion of the
most common class.

Additionally, we used the accuracies of our seven base-
learners as features. We also calculated standard statistical
features of this set of seven accuracies. Furthermore, we

used the same statistical features over pairwise base classi-
fier x-statistics®, a measure of diversity due to (Dietterich,
2000)

e Seven accuracy values, one for each base classifier
(DT, 1Bk-K1, J48, KD, KStar, MLR, NB-K)

e Eight statistical features describing the set of ac-
curacy values (MinAcc, MaxAcc, MeanAcc, StDe-

vAcc, SkewAcc, SkewAcc?, KurtosisAcc, relRangeAcc
— Ma:(:Acc—Min,Acc)
- StDevAcc

¢ Eight statistical features describing the set of all
pairwise x-statistics between base classifiers (MinK,
MaxK, MeanK, StDevK, SkewK, SkewK?, KurtosiskK,
relRangeK)

_ AvgAcce
o relMeanAcc=; FAcc

default accuracy.

, the ratio of average accuracy to

The above features were computed both on the full data
set and also on predictions estimated via tenfold crossval-
idation. For meta-learning of significant differences, we
only used the latter set because it consistently offered bet-
ter estimates during the first task. All statistical differences
for meta-learning were computed via a t-Test with «=99%,
based on the accuracies generated by ten-times ten-fold
crossvalidation.

3. Estimating Stacking’s Accuracy

This section is concerned with predicting the accuracy of
stacked classifiers. Since we prefer simple models by Ock-
ham’s Razor, we first investigated the simplest models pos-
sible: based on only a single feature. Thus, we assumed
linear relationships between each feature and the accuracy
of our stacked classifier and characterized this relation by
statistical correlation coefficients and mean absolute errors
(MAE). Afterwards, we considered more complex and non-
linear models obtained by various regression algorithms
from machine learning.

3.1 Linear Models based on Single Features

As a first step, we calculated statistical correlation coef-
ficients and mean absolute errors (MAE) for all our fea-
tures, always versus the accuracy of the stacked classifiers.
The dataset-related features can be found in Table 2, and
the base-classifier-related features in Table 3. Correlations
and MAEs were determined for all meta-data (All) and also
via leave-one-out crossvalidation (CV). In the former, this
estimate was based on the output of one linear regression
model computed from all meta-examples’ In the latter case,

A value of 1.0 stands for identical predictions between two
learners while a value of 0.0 represents random correlations. A
negative value signifies systematic disagreement between classi-
fiers.

"Each meta-example consist of features computed from one
original dataset, either directly or indirectly, followed by the ac-



Table 2. This table shows the correlations and mean absolute er-
rors (MAE) for dataset-related features vs. the accuracy. The
first column shows the correlation for the full meta-dataset (26
examples), the second column shows the correlation estimated by
leave-one-out crossvalidation. Best features are shown in bold.

Dataset All Cv

Features Corr  MAE | Corr MAE
Inst 026 0.084 | 0.03 0.090
logInst 0.11 0.087 | -0.40 0.095
Classes 0.37 0.089 | -0.09 0.100
Atlrs 0.07 0.087 | -0.58 0.094
PropNomAttr 0.29 0.087 | -0.04 0.095
PropContAttr 0.29 0.087 | -0.04 0.095
PropBinAttr 0.20 0.088 | -0.30 0.098
ClassEntropy 0.16 0.089 | -0.54 0.100
Attr Entropy 0.26 0.085 | -0.05 0.094
M utual Entropy 049 0.072 | 042 0.077
FEquivAttrs 0.58 0.068 | 040 0.079
Rel Equiv Attrs 043 0.075 | 0.26 0.082
S/N 0.23 0.083 | 0.00 0.088
MeanAbsCorr 0.08 0.087 | -0.47 0.093
Mean AbsSkew 0.06 0.087 | -0.45 0.093
MeanAbsKurtosis | 0.06 0.088 | -0.37 0.095
def Acc 0.01 0.087 | -0.94 0.095

this estimate was based on the output of twenty-six lin-
ear models which were determined using all but one meta-
example and evaluated on the remaining meta-example.
The latter case is a more reliable indicator of model perfor-
mance on unseen data, however for meaningful interpreta-
tion the possibly diverse models have first to be integrated
into a coherent whole.

As can be expected from a high-bias linear model, all base-
classifier related features show a graceful degradation from
All to CV. We were surprised to note that this is not al-
ways true for the dataset-related features - about half of the
features have a negative correlation for CV whose absolute
value is higher than the positive correlation for All. This
higher negative correlation can unfortunately not be used to
predict stacked accuracy® and is always coupled to a large
MAE. It seems that a lot of the dataset-related features are
not relevant to this task or that a one-dimensional linear
model is not appropriate to find a meaningful relation. In
any case if we disregard negative correlations, the highest
correlation is always coupled with the lowest MAE as we
would expect it to be.

In the case of base-classifier related features, we have an
additional dimension: we can estimate the base classifier
accuracies on the full dataset (AllIT, CV T) or via tenfold

curacy of the stacked classifier.

8The maximum negative correlation appears in feature defAcc
(-0.94; CV) This correlation is based on twenty-six different mod-
els, one per leave-one-out training fold. All data would have to be
used to determine the final regression line, but then this result can
no longer be validated and seems certainly too optimistic. This
can also be seen by the quite high MAE.

crossvalidation (All, CV). Since Stacking uses CV inter-
nally, we expect All and CV to be better predictors for
stacked accuracy. This is indeed the case —a single feature,
MaxAcc, already yields excellent results. Even though the
internal CV of Stacking is based on less data than the CV
used to obtain MaxAcc, it is still quite competitive to the
best classifier by hindsight!

However, computing a crossvalidation on the original
dataset comes with a non-negligible computational cost.
On the other hand, to compute the features for All and CV
we generate data which could be used as meta-dataset for
Stacking so nothing is lost. What we get in this case is that
we do not have to compute the outer cross-validation and
we do not need to run the meta classifier ten times to ob-
tain a reasonable estimate of stacked classifier accuracy. So
this is still about tenfold more efficient that running Stack-
ing directly. An additional computational cost reduction
by the same factor could be obtained by using training set
accuracy — which motivates the AIIT and CV T set. As ex-
pected, in this case we get less good results for best single
feature, MeanAcc.

3.2 Combined features

In order to test how we may improve our results by using
multiple features, we resorted to using standard machine-
learning approaches for regression on our meta-dataset.
We created one meta-dataset with accuracy estimation via
training set (MetaTrain) and one estimated via tenfold CV
(MetaCV). The dataset-related features were included in
both cases.

We initially decided to evaluate linear regression, LWR (lo-
cally weighted regression), model trees®, regression trees,
KStar and 1Bk instance based learners at the meta-level, but
linear regression and model trees proved superior®®, so we
only used these two learners for further experiments.

So far, the best single features were MaxAcc for MetaCV
(Train: ¢=0.96, MAE=0.021; CV: ¢=0.96, MAE=0.022)
and MeanAcc for MetaTrain (Train: ¢=0.84, MAE=0.045;
CV: ¢=0.81, MAE=0.049). We will now turn towards mod-
els from multiple features to see if we can improve on these
simple models.

For MetaCV, the best model was a model tree. Both the
training set model and all but one crossvalidated model*!
were linear functions of a single feature, MaxAcc. Con-
sequently, the performance on the training set is identi-
cal to the single-feature case (c=0.96, MAE=0.021). The
leave-one-out CV is very slightly worse with ¢=0.95,
MAE=0.023. In this case, combined features are not able to
yield better performance than the best single feature. The
best model for the accuracy of the stacked classifier is thus:

9M5Prime from WEKA, see (Wang & Witten, 1997)

1°Both were always top two by highest correlation and lowest
MAE with the rest of the field — usually far — behind.

"generated via leave-one-out CV on the meta-data



Table 3. This table shows the correlation and mean absolute errors (MAE) on base-classifier related features vs. the accuracy. For
the first two columns, all features are based on training set performance of the base classifiers. For the last two columns, a ten-fold
crossvalidation was used to determine better but more costly estimates of base classifier performance. The first and third column show
the correlations and MAE on the full meta-dataset, the second and fourth column show correlations and MAE estimated via leave-one-out

crossvalidation.

Classifier AlIT CVvT All CcVv

Features Corr MAE | Corr MAE | Corr MAE | Corr MAE
DT 0.77 0.055 | 0.67 0.062 | 0.83 0.046 | 0.79 0.051
IBk - K1 0.72 0.072 | 069 0.076 | 095 0.030 | 0.94 0.032
J48 0.79 0.055 | 0.73 0.061 | 0.84 0.042 | 0.81 0.046
KD 0.69 0.076 | 053 0.086 | 095 0.029 | 0.94 0.031
K Star 059 0.084 | -0.21 0.102 | 093 0.037 | 0.92 0.040
MLR 050 0.072 | 0.07 0.084 | 0.32 0.083 | -0.11 0.097
NB - K 0.81 0.050 | 0.73 0.056 | 0.77 0.052 | 0.68 0.059
MinAcc 0.58 0.069 | 0.27 0.080 | 0.40 0.078 | 0.00 0.091
Max Acc 0.71 0.072 | 068 0.088 | 096 0.021 | 0.96 0.022
MeanAcc 0.84 0.045 | 081 0.049 | 092 0.033 | 0.91 0.036
StDevAcc 058 0.065 | 036 0.074 | 0.26 0.083 | 0.05 0.088
SkewAcc 046 0.073 | 031 0.079 | 0.32 0.083 | 0.02 0.091
Skew Acc? 035 0.081 | 016 0.087 | 0.20 0.083 | -0.10 0.089
KurtAcc 039 0.077 | 022 0.083 | 0.29 0.083 | 0.12 0.088
relRangeAcc | 040 0.075 | 026 0.080 | 0.20 0.090 | -0.20 0.097
MinK 056 0.065 | 046 0.069 | 040 0.075 | 0.23 0.081
Mar K 0.00 0.087 | -0.19 0.096 | 0.18 0.085 | -0.14 0.091
MeanK 0.70 0.059 | 061 0.064 | 0.64 0.060 | 057 0.065
StDevK 048 0.063 | 036 0.068 | 0.15 0.086 | -0.20 0.100
SkewK 058 0.071 | 043 0.078 | 066 0.064 | 0.58 0.070
SkewK? 0.61 0.082 | 032 0.094 | 057 0.075 | 042 0.083
KurtK 0,52 0.088 | 0.09 0.100 | 059 0.070 | 0.47 0.077
rel Range K 0.08 0.090 | -0.81 0.099 | 0.35 0.076 | 0.21 0.081
relMeanAcc 0.28 0.082 0.08 0.087 | 0.38 0.078 0.27 0.082

StAce = 1.074 % MaxAcc — 0.082

For MetaTrain, the best model was generated by linear
regression. While the performance on the training set
is better (c=0.96, MAE=0.023), the leave-one-out CV is
worse in both measures than the best single feature (¢c=0.74,
MAE=0.057). This is most probably due to overfitting.
Thus we have also found no better model than the best sin-
gle feature.

However, from preliminary experiments using a smaller
feature set we had already seen better results for MetaTrain.
Therefore we have decided to run a wrapper feature sub-
set selection for both linear regression and model trees and
also for MetaCV and MetaTrain separately — four wrapper
subset selections in all.

For feature subset selection from MetaCV, the linear model
was best, but model trees were only slightly behind. While
the training set performance is clearly better (c=0.98,
MAE=0.016), the leave-one-out CV shows only a small re-
duction in MAE from 0.022 to 0.021; the correlation stays
the same. This small reduction is MAE is probably not
significant, so we still conclude that for MetaCV, we have
found no model which is significantly better than the best

single feature, MaxAcc.

For feature subset selection from MetaTrain, the linear
model was also best, this time by a larger margin. Both
the training set performance (c=0.97, MAE = 0.019) and
the leave-one-out CV performance (c=0.94, MAE=0.03)
are clearly better than the best single feature, MeanAcc.
Given that, as expected, the correlation is lower and MAE
higher for leave-one-out CV — an indication against over-
fitting — we will now analyze both the model on all data
and twenty-six crossvalidation models further to see if we
are able to integrate them into a single, coherent model of
stacked classifier accuracy.

In each leave-one-out fold, the linear model used all nine
selected features. So we determined mean and standard
deviation of the multiplicative weights of all features which
can be found in Table 4. As can be seen, the weights of the
model from all data (Weight by train) are all easily within
the confidence intervals of the average weights from the
twenty-six crossvalidated models — another indication that
the model is reasonable.

As expected, the best single feature MeanAcc has the high-
est weight. MLR and DT, two base classifier features, also
obtain high negative weights. The default accuracy de-
fAcc seems to be less relevant. Generally, features derived



Table 4. This table shows the feature weights of the best model on
MetaTrain, both of the training set model and the average weights
of the twenty-six cross-validated models. Const specifies the con-
stant term of the linear model.

Feature Weight Weight

by CV by train
MeanAcc 3.9850 + 0.1766 3.9700
MLR —0.9122 £ 0.0503 | —0.9080
DT —0.6955 £ 0.0685 | —0.6940
defAcc 0.1186 + 0.0114 0.1180
rel Range Acc 0.0804 + 0.0067 0.0796
PropNom Attr 0.0472 £+ 0.0050 0.0473
rel Range K 0.0039 + 0.0054 0.0042
FquivAttrs —0.0027 £ 0.0002 | —0.0027
Inst 0.0001 % 0.0000 0.0001
Const —1.7312 £ 0.0728 | —1.7300

from classifiers seem to be more relevant in the context of
predicting accuracy than those derived directly from the
datasets, which was also found in (Bensusan & Kalousis,
2001). Space restrictions prevent us from showing the re-
gression formula, but it can be easily constructed via Ta-
ble 4.

4. Meta-Learning of Significant Differences
This section is concerned with predicting significant differ-
ences between Stacking and three other meta-classification
schemes. For each of Stacking vs. Voting, Stacking Vs.
Grading and Stacking vs. X-Val, we generated a sepa-
rate meta-dataset consisting of all dataset-dependent and
classifier-dependent features'® followed by a binary class
variable, being 1 if Stacking is significantly better than the
other scheme and 0 otherwise. In case there is no signif-
icant difference, we removed the respective example from
the meta-dataset, under the premise that in this case we can
consider both variants to be equivalent and thus judge ei-
ther answer to be correct.

On these meta-datasets, we evaluated a number of stan-
dard machine learning algorithms available in WEKA® via
leave-one-out crossvalidation. We only discuss the best
models which in most cases seem to be rather simple and
based on single attributes only, hinting that they may be
robust.

4.1 Stacking vs. Voting

For Stacking vs. Voting, there are twelve datasets with-
out significant differences. After removing them from
our meta-dataset, we have fourteen instances, seven with
class=1, seven with class=0. The baseline accuracy is thus
50%. Here, 1Bk is the best meta-learner with an accuracy

2Because of the much better results in predicting stacked clas-
sifier accuracy, we only considered those classifier features esti-
mated via cross-validation.

BAll base learners plus 1R and DecisionStump
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Figure 1. This shows a projection of the Stacking VS. Voting meta-
dataset onto two dimensions, via principal components analysis
(53.1% of variance explained). » stands for class=1 (where Stack-
ing is better) and o for class=0. Those datasets which were no part
of the meta-dataset (no significant differences between Stacking
and Voting) are also shown, as x.

of 92.86% and a single error for vote. A cross-validation
using only seven folds shows the exact same result.

When removing the base-classifier dependent features, 1Bk
is still the best classifier with an additional error on labor,
the smallest dataset. In this case MLR which isalso a global
learner is equally good. So we may tentatively conclude
that for this meta-dataset, there seems to be no single fea-
ture which can predict the significant differences as good as
a combination of all features. Figure 1 shows a projection
of our meta-dataset into two dimensions. The single * in
the o territory corresponds to dataset vote.

4.2 Stacking vs. Grading

For Stacking vs. Grading, there are again twelve datasets
on which there are no significant differences. After remov-
ing them from our meta-dataset, we have fourteen instances
whose classes are again equally distributed. Thus the base-
line accuracy is also 50%. Here, J48 is the best choice with
92.86% accuracy and only a single error on the smallest
dataset, labor. The training set model is based on a single
attribute, propNomAttr. In all fourteen folds but two there
is the same model, which also appears as the training set
model.

propNomAttr <= 0.684211
otherwise

class =1
class = 0

In the two other folds, the same attribute appears in the
same formula with 0.65 and 0.695652 resp. as value on
the right side. It seems that the proportion of nominal at-
tributes plays a role on the performance between Stacking
and Grading: in case there are less than about % of nominal



attributes, Stacking works significantly better than Grading.

4.3 Stacking vs. XVal

For Stacking vs. X-Val, seventeen examples offer no sig-
nificant differences. Only nine examples remain for our
experiments, the baseline accuracy is already 66.7%. Inter-
estingly in this case the best model is from DecisionStump
which learns a single J48 node, obtaining 88.9% accuracy,
corresponding to a single error on dataset balance-scale. It
seems J48 is prone to overfitting on this meta-dataset. The
training set model is based on meanAbsSkew. The mod-
els from the nine folds are more diverse: seven times, the
following model appears:

meanAbsSkew <= 0.31 class =0
meanAbsSkew > 0.31 class =1
meanAbsSkew missing class =0

Once the same model appears with value 0.53 instead of
0.31. Once a model based on numClasses <= 13 :
class = 1 appears. The same overall accuracy is also ob-
tained in a six-fold cross-validation. Still, this is probably
those of our models which is least trustworthy.

5. Related Research

Up to now there is no research aiming to either predict the
accuracy of meta-classification schemes or to predict which
meta-classification scheme to use for a given dataset. In
this paper we have investigated both tasks and found them
to work quite well. Other Research is usually concerned
with simple, at most boosted or bagged, classifiers. We
give some representative examples.

Using regression to predict the performance of basic learn-
ing algorithms was first investigated in (Gama & Brazdil,
1995), continuing the framework of StatLOG(Brazdil,
Gama & Henery, 1994). They report poor results in terms
of normalized mean squared error.

(Bensusan & Kalousis, 2001) have recently investigated
meta-learning in a similar setting, using features extended
from STATLOG, histograms of numeric attributes and
landmarking using seven learners, four of which are also
used by us as base classifiers. They found that mean ab-
solute errors are usually significantly lower than a default
strategy of predicting test dataset error as the mean error of
training dataset error. However, a ranking based on these
models performs only once significantly better than the de-
fault ranking based on average accuracy over all datasets.
Only mean absolute errors are given for the regression ex-
periments. Some regression rules from Cubist are shown
and interpreted.

(Brazdil, Gama & Henery, 1994) have investigated meta-
level learning to predict the best classifier for a given
dataset. They use an ad-hoc specified confidence interval
around the best accuracy to define applicable ** and in-

¥4within confidence interval = applicable

applicable classifiers for each dataset. Our approach uses
the statistical t-Test which seems to be more appropriate.
While their approach has to integrate possibly conflicting
rules concerning applicability, making the evaluation quite
complex, our approach can predict significant differences
directly. Furthermore, the focus on using only decision
trees and derived rules may have lead to suboptimal results
as we had to use a variety of machine learning techniques to
get optimal results. They also considered only one-against-
all comparisons between candidate classifiers instead of the
pairwise comparisons best-against-others we investigated.

(Pfahringer, Bensusan & Giraud-Carrier, 2000) investi-
gated meta-learning using landmarkers, which are fast and
simple learning algorithms used to characterize the dataset.
The features which we derived from base classifiers can be
considered similar. They report improved results by land-
marking which we also observed for predicting the accu-
racy of stacked classifiers. However, for predicting sig-
nificant differences we found dataset-related features to be
more appropriate. They report work on removing ties from
the meta-dataset and show that in some cases this can hurt
meta-learning performance.

6. Conclusion

In this paper we have investigated the use of machine
learning techniques in the context of meta-learning both
to predict stacked classifier accuracy and significant differ-
ences between Stacking and three other meta-classification
schemes. We believe these tasks to be complemen-
tary, since predicting the accuracy of meta-classification
schemes may potentially also be used to determine signifi-
cant differences.

We used both dataset-related and base-classifier related fea-
tures in our tasks. In the context of predicting classifier
accuracy, we found that classifier-related features, mostly
those derived from accuracy, are better suited to this task,
as have others (Bensusan & Kalousis, 2001; Pfahringer,
Bensusan & Giraud-Carrier, 2000). A single feature, the
accuracy of the best component classifier in the ensemble,
is able to predict the accuracy of the stacked classifier quite
well. Details can be found in Section 3.2.

However, we have found that for determining signifi-
cant differences between schemes, features derived directly
from the dataset may be better suited — in two of our three
meta-learning problems concerned with predicting signifi-
cant differences a model based on a single dataset-related
feature was superior. In the third case an instance-based
learner using all features was best, but using just dataset-
related features lead to only one additional error, the same
learner remained the best one. Additionally, our meta-
learning experiments were constructed to predict signifi-
cant differences only where they appear. While the removal
of ties from the meta-dataset was previously mentioned in
work by (Brazdil, Gama & Henery, 1994), using a less ad-



hoc and more appropriate statistical test to determine those
ties seems to have been overlooked previously. Details can
be found in Section 4.

At last we have found that there is no single best meta-
classifier for predicting significant differences — a variety of
machine learning algorithms had to be evaluated for opti-
mal results. This hints that pairwise learning problems have
different properties, which may explain why meta-learning
is usually so hard. In contrast, meta-learning for meta-
classification schemes seems to be a much easier problem.
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