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Abstract. In this paper, we discuss grading, a meta-classification tech-
nique that tries to identify and correct incorrect predictions at the base
level. While stacking uses the predictions of the base classifiers as meta-
level attributes, we use “graded” predictions (i.e., predictions that have
been marked as correct or incorrect) as meta-level classes. For each base
classifier, one meta classifier is learned whose task is to predict when the
base classifier will err. Hence, just like stacking may be viewed as a gener-
alization of voting, grading may be viewed as a generalization of selection
by cross-validation and therefore fills a conceptual gap in the space of
meta-classification schemes. Our experimental evaluation shows that this
technique results in a performance gain that is quite comparable to that
achieved by stacking, while both, grading and stacking outperform their
simpler counter-parts voting and selection by cross-validation.

1 Introduction

When faced with the decision “Which algorithm will be most accurate on my
classification problem?” | the predominant approach is to estimate the accuracy
of the candidate algorithms on the problem and select the one that appears to
be most accurate. [13] has investigated this approach in a small study with three
learning algorithms on five UCI datasets. His conclusions are that on the one
hand this procedure is on average better than working with a single learning
algorithm, but, on the other hand, the cross-validation procedure often picks
the wrong base algorithm on individual problems. This problem is expected to
become more severe with an increasing number of classifiers.

As a cross-validation basically computes a prediction for each example in the
training set, it was soon realized that this information could be used in more
elaborate ways than simply counting the number of correct and incorrect predic-
tions. One such meta-classification scheme is the family of stacking algorithms
[19]. The basic idea of stacking is to use the predictions of the original classifiers
as attributes in a new training set that keeps the original class labels.

In this paper, we investigate another technique, which we call grading. The
basic idea is to learn to predict for each of the original learning algorithms
whether its prediction for a particular example is correct or not. We therefore
train one classifier for each of the original learning algorithms on a training
set that consists of the original examples with class labels that encode whether
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Fig. 1. Illustration of stacking and grading. In this hypothetical situation, n. classifiers
are tried on a problem with n, attributes, n. examples and n; = 2 classes (¢, f).

the prediction of this learner was correct on this particular example. Hence—
in contrast to stacking—we leave the original examples unchanged, but instead
modify the class labels.

The idea of grading is not entirely new. [9] and [8] independently introduce
algorithms based on the same basic idea, but provide only a preliminary evalu-
ation of the approach. We will describe this idea in more detail and compare it
to cross-validation, stacking, and a voting technique.

2 Grading

Figure 1(a) shows a hypothetical learning problem with n. training examples,
each of them encoded using n, attributes z;; and a class label ¢/;. In our exam-
ple, the number of different class labels n; is 2 (the values t and f) but this is no
principal restriction. We are now assuming that we have n. base classifiers Cy,
which were evaluated using some cross-validation scheme. As cross-validation en-
sures that each example is used as a test example exactly once, we have obtained
one prediction for each classifier and for each training example (Figure 1(b)).
A straight-forward use of this prediction matrix is to let each classifier vote
for a class, and predict the class that receives the most votes. Stacking, as orig-
inally described by [19], makes a more elaborate use of the prediction matrix.
It adds the original class labels ¢l; to it and uses this new data set—shown in
Figure 1(d)—for training another classifier'. Examples are classified by submit-
ting them to each base classifier (trained on the entire training set) and using

Y In fact, we followed [17] in using probability distributions for stacking. Instead of
merely adding the classes that are considered to be most likely by each base classifier,
they suggest to add the entire n;-dimensional class probability vector Pjx, yielding
a meta dataset with n; x n. attributes instead of only n. for conventional stacking.



the predicted labels as input for the meta classifier learned from the prediction
matrix. Its prediction is then used as the final prediction for the example.

By providing the true class labels as the target function, stacking provides its
meta-learner with indirect feedback about the correctness of its base classifiers.
This feedback can be made more explicit. Figure 1(c) shows an evaluation of the
base classifiers’ predictions. Each entry ¢;; in the prediction matrix is compared
to the corresponding label cl;. Correct predictions (¢;x = cl;) are “graded” with
4+, incorrect predictions with —.

Grading makes use of these graded predictions for training a set of meta
classifiers that learn to predict when the base classifier is correct. The training
set for each of these meta classifiers is constructed using the graded predictions of
the corresponding base classifier as new class labels for the original attributes.
Thus we have n. two-class training sets (classes + and —), one for each base
classifier (Figure 1(e)). We now train n. level 1 classifiers, everyone of which
gets exactly one of these training sets, based on the assumption that different
base classifiers make different errors. Thus, every one of these level 1 classifiers
tries to predict when its base classifier will err.

Note that the proportion of negatively graded examples in these datasets
is simply the error rate of the corresponding base classifier as estimated by
the cross-validation procedure. Hence, while selection by cross-validation [13]
simply picks the classifier corresponding to the dataset with the fewest examples
of class — as the classifier to be used for all test examples, grading tries to make
this decision for each example separately by focussing on those base classifiers
that are predicted to be correct on this example. In this sense, grading may be
viewed as a generalization of selection by cross-validation.

At classification time, each base classifier makes a prediction for the cur-
rent example. The final prediction is derived from the predictions of those base
classifiers that are predicted to be correct by the meta-classification schemes.
Conflicts (several classifiers with different base-level predictions are predicted
to be correct) may be resolved by voting or by making use of the confidence
estimates of the base classifiers.

In our implementation, the confidence? of the level 1 classifier will be summed
per class and afterwards normalized to yield a proper class probability distribu-
tion. In the rare case that no base classifier is predicted to be correct, all base
classifiers are used with (1 — confidence) as the new confidence, thus preferring
those base classifiers for which the level 1 classifier is more unsure of its decision.
The most probable class from the final class distribution is chosen as the final
prediction. Ties are cut by choosing among all most probable classes the class
which occurs more frequently in the training data.

More formally, let p;x; be the class probability calculated by base classifier &
for class [ and example i. For simplification, we write P to mean (p;x1, Pik2, - - - Pikni),
i.e., the vector of all class probabilities for example ¢ and classifier k. The predic-

> We measure confidence with the meta classifiers’ estimate of the probability p(-+)
that the example is classified correctly by the corresponding base classifier. Since
meta datasets as defined are two-class, confidence for — is p(—) =1 — p(+).



tion of the base classifier k for example 7 1s the class [ with maximum probability
piki, more formally ¢;5 = arg max; {pig: }.

Grading then constructs n. training sets, one for each base classifier k, by
adding the graded predictions g;r as the new class information to the original
dataset (gix is 1 if the base classifier k’s prediction for example 7 was correct
(graded +) and 0 otherwise). prMeta;;, is the probability that base classifier k
will correctly predict the class of example i as estimated by meta classifier k.

From this information we compute the final probability estimate for class [
and example i. In case at least one meta classifier grades its base classifier as +
(i.e., prMeta;, > 0.5), we use the following formula:3

prGrading;, = Z{prMetaik|cik =1 A prMeta;;, > 0.5}

Otherwise, if no base classifiers are presumed correct by the meta classifiers, we
use all base classifiers in our voting. The class with highest probability is then
chosen as the final prediction.

3 Empirical Evaluation

In this section, we compare our implementation of grading to stacking, voting,
and selection by cross-validation. We implemented Grading in Java within the
Waikato Environment for Knowledge Analysis (WEKA).* All other algorithms
at the base and meta-level were already available within WEKA.

For an empirical evaluation we chose twenty-six datasets from the UCI Ma-
chine Learning Repository [2]. The datasets were selected arbitrarily before the
start of the experiments and include both two-class and multi-class problems
with up to 2310 examples. All reported accuracy estimates are the average of
ten ten-fold stratified cross validations, except when stated otherwise.

We evaluated each meta-classification scheme using the following six base
learners, which were chosen to cover a variety of different biases.

DecisionTable: a decision table learner

J48: a Java port of C4.5 Release 8 [12]

NaiveBayes: the Naive Bayes classifier using kernel density estimation

KernelDensity: a simple kernel density classifier

— MultiLinearRegression: a multi-class learner which tries to separate each class
from all other classes by linear regression (multi-response linear regression)

— KStar: the K* instance-based learner [5]

All algorithms are implemented in WEKA Release 3.1.8. They return a class
probability distribution, i.e., they do not predict a single class, but give proba-
bility estimates for each possible class.

¥ Penalizing cases where the base classifier predicts class I but the meta classifier
considers this prediction wrong (cix =1 A prMeta;;, < 0.5) did not work as well.
* The Java source code of WEKA has been made available at www.cs.waikato.ac.nz



Table 1. Accuracy (%) for all meta-classification schemes.

Dataset Grading X-Val Stacking Voting Dataset Grading X-Val Stacking Voting
audiology 83.36 77.61 76.02 84.56 hepatitis | 83.42 83.03 83.29 82.77
autos 80.93 80.83 82.20 83.51 ionosphere| 91.85 91.34 92.82 92.42
balance-scale | 89.89 91.54 89.50 86.16 iris 95.13 95.20 94.93 94.93
breast-cancer| 73.99 71.64 72.06 74.86 labor 93.68 90.35 91.58 93.86
breast-w 96.70 97.47 97.41 96.82 lymph 83.45 81.69 80.20 84.05
colic 84.38 84.48 84.78 85.08 primary-t. | 49.47 49.23 42.63 46.02
credit-a 86.01 84.87 86.09 86.04 segment |98.03 97.05 98.08 98.14
credit-g 75.64 75.48 76.17 75.23 sonar 85.05 85.05 85.58 84.23
diabetes 75.53 76.86 76.32 76.25 soybean 93.91 93.69 92.90 93.84
glass 74.35 74.44 76.45 75.70 vehicle 74.46 73.90 79.89 72.91
heart-c 82.74 84.09 84.26 81.535 vote 95.93 95.95 96.32 95.33
heart-h 83.64 85.78 85.14 83.16 vowel 98.74 99.06 99.00 98.80
heart-statlog | 84.22 83.56 84.04 83.30 700 96.44 95.05 93.96 97.23

Avg 85.04 84.59 84.68 84.88

All base algorithms have their respective strengths and weaknesses and perform
well on some datasets and badly on others. Judging by the average accuracy (a
somewhat problematic measure, see below), KernelDensity and KStar seem to have

the competitive edge. Since space restrictions prevent us from showing all the
details, these and other experimental results can be found in [15]. On these base
algorithms, we tested the following four meta-classification schemes:

5

— Grading is our implementation of the grading algorithms. It uses the instance-

based classifier IBk with ten nearest neighbors as the meta-level classifier.
Our implementation made use of the class probability distributions returned
by the meta classifiers. IBk estimates the class probabilities with a Laplace-
estimate of the proportion of the neighbors in each class. These estimates
are then normalized to yield a proper probability distribution.?

— X-Val chooses the best base classifier on each fold by an internal ten-fold CV.
— Stacking is the stacking algorithm as implemented in WEKA, which follows

[17]. Tt constructs the meta dataset by adding the entire predicted class

probability distribution instead of only the most likely class. Following [17],

we also used MultiLinearRegression as the level 1 learner.®

— Voting is a straight-forward adaptation of voting for distribution classifiers.

Instead of giving its entire vote to the class it considers to be most likely,
each classifier is allowed to split its vote according to its estimate of the
class probability distribution for the example. It is mainly included as a
benchmark of the performance that could be obtained without resorting to
the expensive CV of every other algorithm.

+ o . . . .
confidence = p(+) = :_'_—"i, ne is training set size, p of k neighbors graded as +.

6 Relatively global and smooth level-1 generalizers should perform well [19, 17].



Table 2. Significant wins/losses for the four meta-classification schemes against them-
selves and against all meta learning algorithms. The first number shows significant wins
for the algorithm in the column, and the second number for the algorithm in the row.

Grading| X-Val |Stacking| Voting Grading | X-Val |Stacking| Voting
DecisionTable 24/0 22/0 24/0 26/0

Grading | — | 5/6 | 7/7 | 2/4 148 20/2 | 17/3 | 18/1 | 20/1
X-Val 6/5 | — | 6/3 | 9/7 KernelDensity| 21/1 | 18/2 | 20/2 | 23/2
Stacking 7/7 3/6 — 7/8 KStar 19/0 17/4 17/4 19/1
Voting 4/2 7/9 8/7 — MLR 17/3 12/2 13/7 14/5
NaiveBayes 13/5 14/1 14/5 17/7

S~ meta|17/14[15/21] 21/17 |18/19 S base |114/11]100/12]106/19]119/16

As noted above, all algorithms made use of class probability distributions. This
choice was partly motivated by the existing implementation of Stacking within
WEKA, and partly because of the experimental evidence that shows that the use
of class probability distributions gives a slightly better performance in combining
classifiers with stacking [17] and ensemble methods [1]. We did some preliminary
studies which seemed to indicate that this is also the case for Grading, but we
did not yet attempt a thorough empirical verification of this matter.

Table 1 shows the accuracies for all meta-classification schemes w.r.t. each
dataset. Not surprisingly, no individual algorithm is a clear winner over all
datasets; each algorithm wins on some datasets and loses on others. On average,
Grading seems to be slightly more accurate than Stacking (85.04% vs. 84.68%).
Somewhat surprising is the performance of Voting: although it does not use the
expensive predictions obtained from the internal cross-validation, it seems to
perform no worse than the other algorithms which do use this information. Of
course, a comparison of algorithms with their average accuracy over a selection
of datasets has to be interpreted very cautiously because of the different base-
line accuracies and variances on the different problems. In the following, we take
a closer look at the performance differences.

Table 2 shows significant wins/losses of the meta-classification schemes ver-
sus themselves and versus the base classifiers. Significant differences were cal-
culated by a t-test with 99% significance level. Positive and negative differences
between classifiers were counted as wins and losses respectively. Among the meta-
classification schemes, Stacking and Grading are best with Grading slightly behind
(wins — losses = 4 vs. 3) while X-Val and Voting lag far behind (more losses
than wins). Although this evaluation shows that—contrary to the average per-
formance discussed above—Voting does not get close to Grading and Stacking, it
nevertheless outperforms X-Val. Hence, adding up the predicted class probabili-
ties of different classifiers seems to be a better decision procedure than selecting
the best algorithm by cross-validation, which is consistent with other results on
ensembles of classifiers [6]. Table 2 shows that all meta-classification schemes
are almost always an improvement over the six base learners. Measured in terms
of the differences between wins and losses, Voting and Grading are both on first



place (wins — losses = 103). Interestingly, Stacking’s performance seems to be
the worst: it has fewer wins than Voting and Grading, and the most losses of
all meta-classification schemes. Still, meta-classification schemes are clearly an
improvement over base classifiers in any case.

Grading is not worse than any base classifiers on seventeen datasets and better
than all base classifiers on two datasets, among them the largest (segment). Nine
times, Grading is worse than at least one classifier, two times it is worse than two,
and never worse than three or more. Qur meta-classification scheme can thus be
considered an improvement over the base learners in the majority of cases.

However, while our results show no significant differences across the datasets
we studied, they also seem to indicate that the performance of stacking and
grading varies considerably across different domains. For example, our results
seemed to indicate that Grading seems to be better than Stacking on smaller
datasets, while it performs worse on on larger datasets.

In summary, the overall performance of Grading is comparable to that of
Stacking. Although Grading has a higher average performance over all datasets
and has more significant wins against base classifiers, its performance in a head-
to-head comparison is equal to that of stacking.

In a second series of experiments, we wanted to test whether our intuitions
were correct, and tested our original choice of IBk and the six base learners as
level 1 learners. For these experiments, we used only a one-time ten-fold cross-
validation all datasets (as opposed to the average of ten cross-validations shown
in the previous table).

It turns out that IBk with ten nearest neighbors” is in fact one of the best
level 1 learners among the seven tested.

The only algorithm that appears to be slightly better is NaiveBayes. However,
all relative performances are within 1% of that of IBk, i.e., all algorithms perform
about equally good. This came as a little surprise to us, because we had expected
that there would be more differences in this wide range of algorithms. Some of
the algorithms learn local models (I1Bk), while others always consider all examples
for deriving a prediction (KStar). Likewise, some of the algorithms always use all
of the features (NaiveBayes), while others try to focus on important ones (J48).
Apparently, the particular type of meta-learning problem encountered in grading
has some properties that make it uniformly hard for a wide variety of learning
algorithms. We plan further investigations of this matter in the future.

4 Related Work

Our original motivation for the investigation of grading was to evaluate the
potential of using qualitative error-characterization techniques proposed by [9]
and [8] as an ensemble technique. There are some minor differences to these
workshop papers with respect to how we compute the predictions at the meta
level (e.g. the approach of [8] can only handle 2-class problems), but the idea

T After choosing IBk as the level 1 classifier, prior to the evaluation described here, we
had determined the number of neighbors (10) using a ten-fold CV on all datasets.



underlying these approaches is more or less the same. This paper provides a
thorough empirical evaluation of grading, and compares it to stacking, selection
by cross-validation, and voting.

[4] propose the use of arbiters and combiners. A combiner is more or less iden-
tical to stacking. [4] also investigate a related form, which they call an attribute-
combiner. In this architecture, the original attributes are not replaced with the
class predictions, but instead they are added to them. As [14] shows in his pa-
per about bi-level stacking, this may result in worse performance. On the other
hand, [8] compared this approach to the above-mentioned 2-class version of grad-
ing, and found that grading performs significantly better on the KRK problem.
These results have to be reconciled in future work.

An arbiter [4] is a separate, single classifier, which is trained on a subset of
the original data. This subset consists of examples on which the base classifiers
disagree. They also investigate arbiter trees, in which arbiters that specialize
in arbiting between pairs of classifiers are organized in a binary decision tree.
Arbiters are quite similar in spirit to grading. The main difference is that arbiters
use information about the disagreement of classifiers for selecting a training set,
while grading uses disagreement with the target function (estimated by a cross-
validation) to produce a new training set.

Quite related to grading is also the work by [16], who proposed to use the
predictions of base classifiers for learning a function that maps the algorithms’
internal confidence measure (e.g., instance typicality for nearest neighbor clas-
sifiers or a posteriori probabilities for Naive Bayes classifiers) to an estimate
of its accuracy on the output. The main differences to grading is that we use
the original feature vectors as inputs, and select the best prediction based on
the class probabilities returned by those meta classifiers that predict that their

corresponding base classifiers are correct on the example.

A third approach with a similar goal, meta decision trees [18], aims at directly
predicting which classifier is best to classify an individual example. To this end, it
uses information about statistical properties of the predicted class distribution as
attributes and predicts the right algorithm from this information. The approach
is not modular (in the sense that any algorithm could be used at the meta-level)
but implemented as a modification to the decision tree learner C4.5. Grading
differs from meta decision trees in that respect, and by the fact that we use the
original attributes in the datasets for learning an ensemble of classifiers which
learn the errors of each base classifier.

There are many approaches to combine multiple models without resorting to
elaborate meta-classification schemes. Best known are ensemble methods such
as bagging and boosting, which rely on learning a set of diverse base classifiers
(typically via different subsamples of the training set), whose predictions are
then combined by simple voting [6]. Another group of techniques, meta-learning,
focuses on predicting the right algorithm for a particular problem based on
characteristics of the dataset [3] or based on the performance of other, simpler
learning algorithms [11]. Finally, another common decision procedure (especially



with larger datasets) is to take a subsample of the entire dataset and try each
algorithm on this sample. This approach was analyzed by [10].

5 Conclusions

We have examined the meta-classification scheme grading. Essentially, the idea
behind grading is to train a new classifier that predicts which base classifier is
correct on a given example. To that end, the original data set is transformed
into a two-class dataset with new class labels that encode whether the the base
classifier was able to correctly predict this example in an internal cross-validation
or not. This approach may be viewed as a direct generalization of selection by
cross-validation, which would always select the base classifier that corresponds
to the meta dataset with the highest default accuracy.

The experimental evaluation showed that grading is slightly better than
stacking according to some performance measures (like the average performance
on a selection of UCI datasets or an indirect comparison to the base classifiers),
but in a head-to-head comparison the differences are not statistically significant.
Both algorithms, stacking and grading, perform better than voting and selection
by cross-validation. We believe that both approaches are valid alternatives that
should be considered when working with multiple models.

Our results also show that the method seems to be quite insensitive to the
choice of a meta-learning algorithm. This is quite surprising, as we investigated
a variety of algorithms with very different biases. We are yet unsure why this is
the case.

A possible reason may lie in the fact that for reasonable performances of
the base learning algorithms, the two-class meta data set consists of far more
correct than incorrectly predicted examples. Hence the learner should be able
to deal with imbalanced training sets, which none of the algorithms we tested
specializes in. We have not yet investigated the influence of this issue upon the
performance of the learning system.

We remain hopeful that our approach may in time become complementary to

stacking, in particular if the respective strengths and weaknesses of the two ap-
proaches are better understood. To this end, we plan to investigate these issues
by performing a strict empirical evaluation of the diversity of both classification
schemes as well as study the influence of the diversity of the base classifiers on
these meta classification schemes. Our current work concentrates on the defi-
nition of a common framework for meta-classification schemes, which allows a
thorough experimental and theoretical comparison of the different approaches
that have been proposed in the literature.
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