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The Human Visual System
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The Human Visual System

The Retina
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The Human Visual System

Ganglion cells are sensitive to brightness 
differences

Left: on-center cell, right: off-center cell
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The Human Visual System

Orientation columns in the primary visual 
cortex are sensitive to image gradients in 
specific directions.
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The Human Visual System

Higher vision areas have more specific 
feature detectors.

This is a paper-clip recognition neuron...
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The Human Visual System

... and this is a bearded-faces-in-profile 
neuron.
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DARPA Challenge

Autonomous robot vehicle which won the 
DARPA Challenge 2005. Built at Stanford 
University in about 15 months by a team of 
around 35 people. Uses Machine-Learned 
Laser Perception and Speed Strategy.

            Stanley
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Stanley

Sensors
• Sight: Five laser rangefinders; monocular video camera; 

radar for long range sight
• Position: GPS sensor with 20cm resolution for pose 

estimation; measurements of wheel speed for pose estimation
• Balance: a 6 DOF inertial measurement unit; GPS compass 

generates 2 DOF balance information from two separate GPS 
antennas

Brains
• Six Pentium M motherboards in a rugged rack mount unit
• Battery-backed, electronically-controlled power system
• Custom software modules for: Planning and Optimization; 

Control; LIDAR - Light Detection and Ranging; Computer 
Vision; Inertial Navigation; Reliability

• Data sampling from instruments at rates varying from 10Hz 
to 100Hz.
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Vision System

Adaptive Vision
• Use laser range finder to locate a smooth patch of 

ground ahead
• Sample color and texture of this patch from monocular 

video image
• Scan for same color and texture in the whole image

⇒ Road Segmentation
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Alternative Vision System

"Adaptive Road Following using Self-Supervsied Learning 
and Reverse Optical Flow" (Lieb, Lookingbill & Thrun, 2005)
• Assume: region directly in front of the vehicle is drivable road.
• Sample region at various distances from past images, using 

reverse optical flow to determine its previous position.
• Match each sampled region

at appropriate vertical
    pos.in the current image
• Integrate via Dyn.Prog.

⇒ Road Segmentation
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Scale Invariant Feature Transform (SIFT)

[Lowe, 1999] & [Lowe, 2004]
2. Scale-space extrema detection via difference-of-

gaussians
3. Keypoint localization by local quadratic interpolation
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Scale Invariant Feature Transform (SIFT)

3. Orientation assignment via direction histogram peaks
4. Keypoint descriptor by sampling & trilinear 

interpolation

⇒  Set of image keypoints with 128-dimensional 
descriptors
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Scale Invariant Feature Transform (SIFT)

Matching keypoints with an image database
• Best-Bin-First: fast approximation of nearest-neighbor
• Clustering features with Hough Transform in Pose 

Space
• Least-squares solution of pose to determine final 

affine transform of the object for accurate localization
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European RoboCup (FIRA)

The IHRT Robot Soccer team at the Technical 
University of Vienna is currently one of the 
top teams in the European RoboCup (FIRA).

Video
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European RoboCup (FIRA)

Robot position estimation
• 1-2 ceiling-mounted cameras 

(>=60Hz)
• Four colored fields on top of each 

robot in combinatorial code – at most 
4-5 colors distinguished by vision.

• Calibration: manually select volumes 
in normalized RGB or HLS color 
space for each color (30-45 minutes 
before game)

• Robot and ball movement model
• Commands are given by radio 

(860Mhz)
• No collision detection and no 

tracking of other team robots(!)
• Around 40,000 lines of code in all; 

5,000 for position estimation; 5,000 
for robot behaviour controller 
(centralized)
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Robot Soccer in Space

The same hardware platform was also used in a project 
that aims to build a space-based solar panel energy 
generator.
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Handwritten Digit Recognition

Students of AI Methods of Data 
Analysis  contributed around 
4500 handwritten digit 
samples in 2005, and classified 
them with a variety of current 
learning algorithms.

The dataset and a technical 
report about the project is 
available at 
http://alex.seewald.at/digits/
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Handwritten Digit Recognition

Scan1.bmp
Scan2.bmp
Scan3.bmp
...
Scan49.bmp
Scan50.bmp
Scan51.bmp

Segmentation
• Vertical and horizontal histogram peaks as first estimate
• Local search for the true line along each midpoint between 

crossings
• Linear regression on found points ⇒ table cell positions
• Reduce table cell size uniformly until border has only white 

pixels
• Reduce table cell size for each direction separately, until 

enough black pixels are found in several consecutive steps
Manual image processing task with 8 resolution-dependent 

parameters

Preprocessing
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Handwritten Digit Recognition

• Digits were downsampled to 16x16 pixels
• Moderate blurring and arbitrary scaling 

improved performance of most learners 
(bottom right). This data was used for 
image classification.

Similar to digits from other benchmark
datasets:

US Postal (zip) MNIST
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Handwritten Digit Recognition

Results of best learning algorithm on several datasets
• Our dataset (digits): 6.01% error rate (  2,191 samples 

trained)
• US Postal (ZIP): 4.29% error rate (  7,291 samples trained)
• MNIST: 1.27% error rate (60,000 samples trained)

Conclusion:
• Performance depends strongly on number of training samples
• Almost no expertise can be transferred between datasets(!) 
Best bet is therefore to train on real-life data for each application
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Conclusion

• Human visual system works better, but technology is slowly 
gaining

• Segmentation still needs a lot of ad-hoc programming and 
parameter tuning. Learning for segmentation tasks has not 
yet been conclusively demonstrated, and may be an 
interesting topic for the future.

• Once segmentation is done, a variety of learning approaches 
can be used for image classification, and generally perform 
well.
Future/Current Work


