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Types of Attributes

Categorical Scale (qualitative, discrete, nominal)

 eg.{Success Failure}, {ORF1, SAT1, RTL, ..}

* Finite, small number of values; arbitrary ordering of values

Ordinal scale (ordered categorical ~ qualitative)

e eg.{low, medium, high}, { dow, moderate, fast}

* Ordering is apparent (low<medium<high), but distances are meaningless

E.g. the distance between low and medium and between medium and high is
not necessarily the same.

| nterval/Ratio scale (Quantitative, numeric, continuous)
e eg.temperaturein °C/°F/K, wind speed in km/h
» Interval: Distances between values are meaningful.
Today it is2 °C colder than yesterday.
* Ratio: Ratiosare dso meaningful. Zero point has to be known!
In Florida, the wind blows twice as fast as here.
WEKA only distinguishes between qualitative (categorical & ordinal scale)

and quantitative (interval & ratio scale) attributes/features. Convert
Qualitative = Quantitative via NominalToBinary(d ) and Discretize(1)
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Types of Datasets

Attributes can berelated temporally and/or spatially:

o Unstructured Data: no explicit temporal/spatial structure
(= notemporal/spatial relationship over attributes)

 Time Series Data: tempora structure

o Text Data: special kind d time series data

e Spatial Data: spatial structure

o Spatiotemporal Data: bah spatial and temporal structure

For al leaning systems, the order of attributes is
irrelevant. Therefore, spatial and temporal structure
between attributes is not adressed. If one wants or needs
to take acount of spatial/temporal structure in the data,
thisis done by appropriate preprocessing.
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Unstructured Data

Each attribute measures a property. Each example
I epresents one object with all measured properties.

e Postal zip code of home residence age, turnaround &
revenue (over a fixed period), profession, howsehold
Income etc... o agiven customer.

1010 23 4500 250 Sales Representative 2100 ...
1040 37 5700 530 Manager 3500 ...

o Sepa length and width, Petal length and width of a flower
5.0 33 14 02 Iris-setosa
7.0 32 47 14 Irisversicolor
6.3 33 6.0 25 lIrisvirginica
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Unstructured Data

No specific preprocessing is needed. Learner-specific preprocessing for
attributes X is transparently handled by WEKA,; filters to transform Y
may need to be applied manually. Remember: alearner findsf: X - Y

Some lear ning algorithms only accept quantitative/numerical X
o 2vaues[] map to one quantitative variable a 0/1 or -1/1

 nvaues [l map to n quantitative binary variables, only one of which is on
(=1). Also cdled 1-of-n coding, dummy variables.

Some |ear ning algorithms only accept quantitative/numerical Y
« 2vaues ] map as above, and map the prediction Y back via ssimple treshold
(0.5for O/l and O for -1/1)

 nvaues ] multiple models have to be leaned; e.g. map as above and use one
binary variable for each of n models. More complex mappings are possble.

Some lear ning algorithms do not accept quantitative/numerical X or Y
» Discretize values to a qualitative variable with ordinal scde

« Someinformation isinevitably lost - performance does not necessarily suffer.
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Time Series Data

Each value corresponds to a measurement at a specific
time point. Multiple values of each measurement exist.

e Audo Data: music, speed, equiment noise...

o Company share/ exchange index: price over time
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Time Series Data

A large set of methods can characterizetime series data:

o Store all training examples. Use instance-based leaning
with dyramic time warping (DTW) as distance measure.

« FFT, Waveets, .. transform time series into time-
Independent representation by describing it as a sum of
distinct base signals. Speafic features sroud be extracted.

 Windowing: split time series into smaller parts and tred
each as Independent example.

 Downsampling: stretch/contrad time series to constant
length and sample the value at a small number of paints.
Fedures can be @mputed on these poants (eg.
INncreasing/decreasing series, constant series..)
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Text Data

Text is represented as a sequence of characters.

Transforming thisinto useful featuresvia:

Tokenization: Find the boundries  between
words/sentences. Simple for German and English (i.e.
whitespaae), aimost impaossble for Chinese, Japanese and
some other languages. Extract words from eadt sentence

Bag-of-words. one dtribute per word which encodes
(binary) word occurrence or (numeric) word cour.
Discards word order, bu works surprisingly well in many
text clasgfication tasks, and daes not need costly corpus.

Chunking and Parsing: Create treelike structure which
describes gyntactics and semantics of sentence Instance-
based leaning and Hidden Markov Models are mainly
used for creating and processng these representations.
Needsatraining set corpuswhich iscostly to create.
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Spatial Data

A large set of methods can characterize spatial data:

Downsampling: ead example is sasmpled to constant small
size(e.g. 8x8 pxels). Eadh pxe value gives an attribute.

Histograms: sum of pixel values for each row / column.
Fedures such as position d maximum / mnimum values,
energy of Wigner-Ville distribution, entropy etc.. are used.

Pixel-based (e.g. for area utilizaion): each pixel is treded
as an example. Colorspace @ordinates or derived
attributes are used as features.

Image Segmentation: algorithms extract segments (i.e. set
of conneded pixels) with constant color / brightness Area,
point-of-gravity, length of boundiry etc.. can be used as
features.
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Spatiotemporal Data

Each value corresponds to a measurement in space and
time. Often gpatial and temporal locations cannot be
uniformly sampled. Thisiscalled sparse sampling.

 Meterologcd datafor weather prediction
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Spatiotemporal Data

Uses methods from temporal and spatial preprocessing
(e.g. Downsampling, Windowing, Histograms, FFTs...)

Additional issue: Sparse Sampling

It Is not always possble to sample dl data points at
uniform temporal and spatial resolution.

(e.g. satellite with high-resolution camera moving ower
earth: high spatial, low temporal resolution; airplane with
NO, sensor: low spatial, hightemporal resolution etc..)

So there is a dea trade-off, which means that only a small
part of the possble temporal/spatial positions can be
measured. The nonmeasured pants usualy have to be
Interpolated from known pants.
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Preprocessing - Summary

For each type of dataset, specific preprocessing is needed:

Unstructured Data: no speafic preprocessng is needed
(leaner-speafic preprocessng is mostly dore by WEKA)
Temporal Data: Use instanced-based leaning with DTW,
and/or charaderize each example via FFT/Wavelet, and/or
downsample/ window...

Text Data: bag-of-words or corpus-based approades.

Spatial Data: Downsample to fixed dize
horizontal/vertical histograms, treat each pixel as sparate
example, Iimage segmentation...

Spatiotemporal Data: mix temporal and spatial
preprocessing. Suffers from sparse sampling (very few of
all possble spatial and temporal points can be measured),
SO missng chta needs to be interpolated from given data.

[1 Replace spatial/temporal structurewith less structure.
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State-of-the-Art L ear ning Systems

Linear Methods

e Linea Regresson

* Logistic Regresson

o Suppat Vector Madineswith linea & nonlinear kernels
Non-Linear Methods from Statistics
 NalveBayes

 |nstanced-Based learning

Non-Linear Methods from Machine L earning
e DecisionTrees

e RulesLeaning (RIPFER)

Simple & Fast Basdine Methods

e OneR

e ZeroR
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Linear M ethods

All linead methods have high hias and low
variance. The dedsion surfage which splits the
data into positive and negative example is
aways ahyperplane (in 2D: aline)

Linear Regression
e Minimizes mean sguared error
 Vaery fast, but susceptible to outliers

L ogistic Regression

* Regularization: Estimate class probabiliti es
vialogistic function, and ensure they sumto 1.
Maximizes log-likelihood of mode given
training data, i.e. P(f|TD)

e Quitefast; less susceptible to outliers T,
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Linear Methods (2)

Support Vector Machine with linear kernel

Regularization by defining a well-posed
optimizaion problem: finding the maximum
margin hyperplane (i.e. maximizing the margin
under constraints on misclassfications)

Fast; least susceptible to autliers

Similar to logistic regression for two-classtasks.

Support Vector Machine with nonlinear kernel

A linear model in high-dimensional (feature)
space defined by a nonlinea kernel. Deasion
boundary will usually be non-linear in the
original feature space.

Quite fast for polynomial and RBF kernel; sow
for complex kernels (e.g. String/Graph kernel)
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Non-linear M ethods from Statistics

The following ron-linear models are low bias and™* "~ . .-

high variance. The deasion boundary |ooks
differently in each case and is usually non-linear.

NaiveBayes
» Estimates class probabilities directly from TD.

Assuimes eadh attribute antributes
independently to the final classprobabliti es.

« Very fast. Less sitable for quantitative atributes -«

| nstance-based |lear ning (neaest neighbor)

o Classfy by similarity with training examples.

e Universal approximator: Can learn any concept
to abitrary preasion gven sufficient data

o But sufficient data size grows exponentially with
the number of input dimensions (curse-of-dim.)

Fast training, dow testing (~O(N?2))
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Non-linear M ethods from ML

.. e @ (@@ o ® & |0
Decision Trees (C4.5) R B I
e Divide-And-Conquer: Reaursive partitioning . N X
of training data by attribute values. Creates AL
decision treewith classvalues at the leaves. B s
« Only alows axis-paral e splits ! e |
« Fast & easy to understand (if treeis small) UL
ks o i >e< ks
Rule Learning (RIPPER) o [0 T
o Separate-And-Conquer: Successvely x
partition training data by rules = sets of L) Gl Lt
conditions over attribute values. — cronis —
* Yields compact and modular descriptions = *¢] e o T
rule sets. Dedasion boundaries for each rule co ey
are still axis-parallel. SRR
e Slower, but even easier to understand since o
rules can be analyzed separately. + L

© Alexander K. Seevald
aex@seavald.at / alex.seevald.at

18



Simple & Fast Methods

These methods are very fast even for large
datasets, and have very high bias & very
low variance

Zer oR (gives Baseline Error/Accuracy)

 Predicts most common class from TD,
or arithmetic mean for regresson tasks

» Meaures complexity of learning
problem based on classdistributions.

OneR
» Outputs the best rule based on values of
asingle dtribute.

« Meaures complexity of learning
problem based on classdistributions and
the distributions of values from the most
predictive atribute.

o Lessuseful for quantitative dtributes.
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L earning Systems - Summary

Characteristic Lin.& | SYM | Naive | Inst. Dec. Rule
Log.R Bayes | Based | Trees | Learn.

Natural handling of — — o) — + +

"mixed" data

Handing d MVs — — + + + +

Robustnessto ouliers —/o 0 0 + + +

Insensitive to — — — — + +

monotone transform.

Scal abil ity + o/+ o/+ — + 0]

Robstnessconcerning — — 0 — + +

irrelevant inputs

Interpretability + — 0 — o) +

Predictive Power 0 + — + 0] 0
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