Inductive Rule Learning &
Support Vector Machines

_ 1
C= a7

Lektor Dr.techn. Alexander K. Seewald
Osterreichisches Forschungsinstitut
far Artificia Inteligence

© Alexander K. Seevald
aex@seavald.at / alex.seevald.at

TwoWaysTolLearn

Divide-and-Conquer: Apply reaursively! Choose best attribute & top and
then reaursively creae rules for ead subset instead of just counting the
most common class Repea until "pure" (=only examples of the same
clas9. This creaes adecision tree of attribute and class values.

[1 Decision Tree Learning (aswe drealy saw)

Separate-and-Conquer: Lean best rule for a subset of training data,
remove bath positive examples which are wrredly classfied and those
negative examples erroneously classfied as positive (latter examples
should number few or none). Apply this algorithm reaursively until
very few or no positive examples remain. This creaes a rule set for
clasgficaion.

* Not as efficient as divide-and-conquer, but has other advantages. More
compad than dedsion trees, a modular and easlly understandable
representation and the aoility to learn partial models.

[1 Inductive Rule Learning

© Alexander K. Seevald
aex@seavald.at / alex.seevald.at

Rule Sets- Bias & Variance

3 Hypothesis Space and Bias of Classification Rules
A2 - - -
— - + —
- + — 1' Kl
-4 EE 7 RULE 1
- | g Alz321&
- - - + + +
+_ - . i+ & + r - A< TR &
- T = + + A226.2
6.2 - - ToF + r_ T -t => Class is +
- - + +
+ + * + _ z -
— + -
-+ _ __ +
+ + -t 4+ oo- -
+ - - - + _ _ _ ¥
+ + - - - -, v 3 +
+ . 1 + _ s ¥ _ _ - b
+ - * i _ =+ - "'_+ _
+ - - - - +
f + * *
- i L . - RULE 2:
[— - - + - —_ [—
- - - - . . - * 4 Al23 &
-+ ¥ i + ++ _ - + - Al 53 &
Ly - + - - . A252.9
- + + + - .
-, = F + * * == Class is +
3 32 53 Al

Low bias, high variance. Concept boundaries are axis-paralld
hyperrectangles (see above), one for each rule within the ruleset.

© Alexander K. Seevald
aex@seavald.at / alex.seevald.at

Separate-And-Conquer Rule Learning

L earning Rule Sets: Sequential Set Covering Algorithm

procedure LeanRules(c,TD)
Rules:={}; Pos:={x, O TD |y, = c};
Neg:={x, O TD |y, #c};
repeat
Rule := FindBestRule(c,Pos,Neg);
Pos := Pos\ Covers(Rule,Pos);
Neg := Neg \ Covers(Rule, Neg);
Rules := Rules [Rule;
until RuleSetStopCrit(Rules,Pos,Neg);
return (Rules);

procedur e FindBestRule(c,Pos,Neg)
Rules:={ [J c} /I — creaedefault rule
while not RuleStopCrit(Rule,Pos,Neg) do
Rule := Rule O FindBestConditi on(Pos,Neg);
Pos := Covers(Rule,Pos);
Neg := Covers(Rule,Neg);
endwhile; return (Rule);

Simplest stopping criterion 1.

RuleSetStopCrit = trueif all
positive examples are cwvered by
the aurrent rule set, i.e. Pos = {}

Simplest stopping criterion 2:

RuleStopCrit = trueif therule
covers no more negative
examples, i.e.,, Neg ={} . Such a
ruleis called consistent.

A rule covers an example if the conditions of the rule match the atribute values
of the example. Rules always predict the positive class

© Alexander K. Seevald
aex@seavald.at / alex.seevald.at

How to find the best rule?

Given set of positive / negative examples, find best rule (=set of conditions) that

Covers many positive examples
Covers few or none negative examples
|sas smple & possble (Ockham's razor)

Exhaustive seach is impossble since this would have to consider all possible
subsets of rule conditions (nP for p nominal attributes each having n-1 possble
values). Heuristic search is needed, but gives no guarantee of best solution.

General search directions

Bottom-up (specific-to-general)

Start with a very long list of conditions (e.g. the complete description of one
positi ve example) and delete conditions one by one (step-wise generali zation)

Top-down (general-to-spedfic)
Start with empty rule (no conditions) and add conditions one by one (step-wise
spedaali zation). Similar to our version of FindBestRule.

© Alexander K. Seevald
aex@seavald.at / alex.seevald.at

Heuristic Search Algorithms

Hill-climbing

At eah step, add or drop the wndition (from all possble nditions) that
maximises sme local heuristic evaluation measure.

Problem: short-sighted and greedy.

Beam search

Always keep a list of n alternative refinements; expand the currently best one
(according to some locd heuristic). Explores larger portion of search space
and can find globall y better solutions. Less $iort-sighted, but still greedy.

Best-first search
Explore al possble solutions, always focusing on the most promising first. If

unrestricted, explores full search space Must be acompanied by search
pruning. Still inefficient, but can guaranteeto find best solution.

M ost commonly used

Top-down search with hill -climbing (as in FindBestRule) or beam search.

© Alexander K. Seevald
aex@seavald.at / alex.seevald.at

How to find best condition to add?

General approach for FindBestCondition: test all |Outlook| T | H |Windy|Play?

possble conditions and choose the best one |overcast|64°F | 65% | true | Yyes

according to heuristic, e.g. max.ent. & (p>n). rainy |65°F |70% | true | no
Example: Weather dataset, yes=positive examples | _Sunny |69°F | 70% | false | yes
(target), no=negative examples. sunny | 75°F | 70% | true | yes

overcast| 81°F [75% | false | yes
rainy |68°F |80% | false | yes

o Partial rule {outlook=rainy [yes}. Covers 5
examples: 3 positive and 2 negative. :
rainy |75°F|80% | false | yes

Possble conditions for improvements: ;
o sunny | 85°F [85% | false | no
Temp <66.5 (0+,1-) Humidity 275 (3+,1-) overcast | 83°F | 86% | false | yes

Temp = 66.5 (3+,1-) Humidity < 75 (0+,1-) sunny | 80°F | 90% | true | no
Temp < 70.5 (2+,1-) Windy=false (3+,0-) overcast 72°F [90% | true | Yes
Temp=>705(1+1-) Windy=true (0+2-) rainy | T1F |91% | true | no

sunny | 72°F | 95% | false | no
rainy |70°F |96% | false | yes

Temp < 73.0 (2+,2-)
Temp = 73.0 (1+,0)

o Choose Windy=false. Refined rule is now
{outlook=rainy & windy=false [yes}. Covers
3 positive and 0 negative examples.

[1 Wehavefound a consistent ruleand return it

© Alexander K. Seevald
aex@seavald.at / alex.seevald.at

Heuristic Evaluation Functions

Notation:
P ... thetotal number of positive examplesin training cata TD
N ...the total number of negative examplesin training cata TD

' ...the current (incomplete) rule
P ...the number of positive examples covered byr’
n' ...the number of negative examples covered byr’

I ...theruleresulting from adding a condtiontor’
P ... the number of positive examples covered byr
n ... the number of negative examples covered byr

© Alexander K. Seevald
aex@seavald.at / alex.seevald.at

Heuristic Evaluation Functions

Basic Heuristics

PositiveCoverage C(r)=p

_pt(N-n)
Accuracy. A(r) = [Ip—n
Y. (r) Y P
Purity: P(r) = P
p+n
Informatian Content 1C(r) =-log, P(r)
_ P P n n
Entropy: E(r)=- lo lo
Py (r) 04N gzp+n 0+n gzp+n
P pp n o+
CrossEntropy: CE(r) = - log., 20 — log., 2"
py () p+n gZ PEN p+n gZ P-[:|N

© Alexander K. Seevald
aex@seavald.at / alex.seevald.at

Heuristic Evaluation Functions

Basic Heuristics (2)

LaplaceEstimate

m— Estimate

Correlation :

GainHeuristics

Coveragésain:

Weightedinformatian Gain: WIG(r) = —-C(r)(1C(r) —

+
LAP(r) = —P*1
p+n+2
m
M (r) — p P+N
p+n+m
p+tn—fn-n _ (p'—n'Xp+n—(tn+ fn))
Corr(r) = —2 Pt pon
+n—(tn+ fn)
(p+n) Xl g pin)
th=n'-n fn=p'-p
cory=P-—P_N=N
P N

1C(r))

© Alexander K. Seevald
aex@seavald.at / alex.seevald.at

10

Overfitting Avoidance: Pre-Pruning

Basic ideas
« Stoprefining arule dthoughiit is gill inconsistent (i.e. covers neg. instances)
e Stop adding new rules although some positive instances are still not covered.

Basic method
e Modify stopping criteria RuleSetSopCrit, RuleStopCrit in LearnRules et .

Commonly used criteria

e Minimum Purity: If the best next rule that can be found is below a speafied
purity threshold (Purity(r) <€), stop adding rules ([RuleSetStopCirit)

« Encoding Length Restriction: Number of bits needed to encode arule must
be less than number of bits needed to code the mvered examples. |.e., stop
refining a rule when it would become too complex (LI RuleStopCirit)

» Significance Test: Stop adding conditions to a rule if none of the conditions
shows a pre-specified minimum correlation with the dasslabels, similar to
pre-pruning viaX2in DT dides (O RuleStopCirit)

© Alexander K. Seevald 11
aex@seavald.at / alex.seevald.at

Overfitting Avoidance: Post-Pruning

Basic idea

First learn a (possbly large) set of (possbly complex) rules that fit the training
datawell; then gradually simplify the rule set by

» Dropping conditionsinrules (LJ simplifying/generalizing the rules)

» Dropping entire rules (I simplifying/generali zing the model)

A standard method: Reduced Error Pruning (~DTYS)
e Split training set into agrowing set (e.g., 70%) and a pruning set
* Lean theory from growing set
o Simplify theory stepwise
Consider dropping conditions and dropping rules. Always perform (greedily)

the ssmplification step that produces the greaest improvement in e.g. accuracy
on the pruning set until no step improves the rule set anymore.

© Alexander K. Seevald
aex@seavald.at / alex.seevald.at

12

Reduced Error Pruning for Rule Learning

Reduced Error Pruning

procedure REP(TD, SplitRatio)

SplitExamples(SplitRatio, TD, GrowingSet, PruningSet);

Model := LeanRules(GrowingSet);

NewModel := BestSimplification(Model, PruningSet);

while Accuracy(NewModel, PruningSet) = Accuracy(Model, PruningSet)
Model := NewModel;
NewModel := BestSimplification(Model, PruningSet);

endwhile;

return (Model);

Further improvements on REP (which has a wor st-case complexity of O(n%))

 Incremental REP (IREP): Prune e&h rule separately, removing covered
examples from GrowingSet and PruningSet. Remaining instances are
redistributed into new Growing/PruningSet. Stop when predictive accuracy on
PruningSet is below baseline acuracy (i.e. accuracy of the anpty rule ZeroR)

 Repeded Incrementa Pruning to Produce Error Reduction (RIPPER):
Optimized version of |REP which runsthe leaning processmultiple times.

© Alexander K. Seevald
aex@seavald.at / alex.seevald.at

13

Support Vector Machines

C=_1_
a1 . 1
C = 18T

Initially, alinear model in Xx. We don' t minimize residual squared error (RSS)
or log-likelihood, but maximize the margin ||B|| resp. minimize C=1/||B||. f(x) =
XT.B+B, is our function/model, where y,[{+1,-1} (i.e. the sign o f(X)
determines the dass), but the weights 3 and constant term (3, are determined
differently. This new regularization again guarantees an unigue solution.

If the data is linealy separable, we minimize ||B|| subjed to the constraints
y.(%T.B+By)=1 for U i=1,2,...[TD|. Seetop left figure.

If the datais not linearly separable, we

(xT B + >1-¢&
introduce slack variables¢; to let (X B+ o) <i

min||| subject to] el

1
some examples be on the wrong Bgi >0, Z & < constants >
side of the margin. See top right figure. =

© Alexander K. Seevald 14
aex@seavald.at / alex.seevald.at

Support Vector Machines (2)

This optimization problem is quadratic with linear inequality constraints and is
thus convex. A quadratic programming solution using Lagrange multipliers is
therefore feasible. An equivalent form of the nonseparable caeis:

D]
min%HﬂHz +1Y ¢ subjecttaZ; 20,y (X B+ B,)21-¢ i
Parameter A determines the weight given to optimizing the dad variables ¢&;

versus optimizing the margin. The separable cae @rresponds to A=co.

The Lagrange primal function combines minimalizaion and constraints into a

smgleformula_ 'Il'hcle cnnsl,tr?l nts are weighted by Lagrange ernDtljltl pliersa; and L.
TD TD

=8l #1363 Al B B) A=l 5 i

which will be maximized w.r.t. 3, B, and &;. Setting the derivates to zero yields:

ol [Substituthginto L, yieldstheLagrang€Wolfe)dualobjectivefunction
p=" ayX Qg m 4 M)]
= O Lyp=)a - a0 Y, Y. X X,
[TD) [] Z Z Z Y%
0= £ *Yi E andtheKarush- Kuhn- Tuckerconditiongindicatesa solution)
K = A B (4=a;)e; =0 ai[yi(xrﬂ-l_ﬂo)_(l_gi)]:
o, 1,6 20 [Y (X! B+ B,) —(1-¢) 20 (respfor i)

© Alexander K. Seevald
aex@seavald.at / alex.seevald.at

15

A high-biaslearner: Perceptron

If the weight vector w is

initially set to all zeros,

the fina w after

convergence will be a

«t ., linear combination of the
={ =0 ' training examples, similar

L otheraise

toaSVM.

Computes a linear function of x (assume algfng an x,=1 to X, so that constant
term w, can be handled). f(x) = sign(x™.w)Av isinitialized randomly.
Perceptron training rule: w « w+n(y-f(x)).xT, wherey isthe true output value
from training data (1), and n isthe leaning rate.

Intuitively, concept boundary is a hyperplane which separates classes +1 & -1.
Update rule is applied to each training example in turn, repeating until all
training examples are classfied correctly. Provided n is small enough, and the

training set is linearly separable, this algorithm converges in a finite number of
steps. If datais not linearly separable, convergence is not asaured.

© Alexander K. Seanvad
aex@seavald.at / alex.seevald.at

Support Vector Machines (3)

Features of the optimization problem for SVMs
» Nolocd minima, only one global minimum — the maximal margin hyperplane.

« To solve the dua problem we need only the dot product x;'x, for eadh
combination of training instances. The function computing the dot product,
K(u,v) is called kernel. This kernel trick enables us to expand the original
feature space via @(x), thus leaning a maximum margin hyperplane in higher-
dimensional feaure space which gves a nonlinear decison boundary in the
original, lower-dimensional feature space. Usually only afew a; are nonzero -
the assciated examples x; are cll ed support vectors.

[TD| 1 ™D D]

Lo —Za - IZZa VY KX, ;) whereK (u, V) = (g(u) [p(V))

@:0° 0" (m>> p) and<¢(u) Eo(v)} N @ (W)@ (v) =thedotproduct

» The weight vector (3 is a linear combinations of training examples x; . We can
use this relation to compute model f(x) via the kernel function. This alows us
even an infinite-dimensiona @(x), i.e. m=co, without explicit computation of 3.

D]

f(X) Zale(Xixl)-l_ﬂO

© Alexander K. Seevald 17
aex@seavald.at / alex.seevald.at

Example: A Polynomial Kernel of Degree 2

2 p p p [P P (p.p)
K(u,v) =(uly)” = &uivi = &uivi %ujvj D > uuvy; = Z(uiuj)(vivj
I1=1 I1=1 j=1 L [=1 J=1 @i,j)=(0,D

whichis equivalenttoadot productusingg(u) = (u,u;)i,

Usually only the kernel function K(u,v) is defined explicitly, and the feature
mapping @ is defined implicitly. Not al functions can be written as dot product

[J Necessary and sufficient conditions for a kernel function in the finite case

o Symmetry: K(u,v)=K(v,u)

» Cauchy-Schwar z I nequality: K(u,v)2<K(u,u)K(v,v)

« Kernel Matrix K is positive semi-definite K = (K (x ,X.))(.n,.n)_
(XTKx=0 for all x#{0}P) V20, 1=(L)

In the infinite-dimensional case: Mercer' s Theorem

Common kernel functions

polynomial kernel of degreed: K(u,v)=(<u.v>+c)d (linear kernel if d=1)
Radial basis function (RBF): K(u,v)=exp(-|Ju-v|P/c)
Kernels may be used as badkground domain knowledge, but are quite opague.

© Alexander K. Seevald
aex@seavald.at / alex.seevald.at

18

Sequential Minimal Optimization (SMO)

Many ways exist to solve the dual optimization problem iteratively. We will focus

on one simple algorithm, Sequential Minimal Optimizaion (SMO).

j

j KX, %) + K(X;,X%;) = 2K(X;,X;)

A if o] >V
— %x?ewunc if U S0{;1(9\/\/,unc <V
|f anew,unc <U
—_ +y.y (aold _ new)

Bnax(o a0|d a0|d)
gnax(o OCOId +a0|d i)

_ E‘nln(i,a?'d o + 1)
= anln(i’aj)ld +a0|d)

if y, 2y,
ify, =y,

if y, £y,
if y, =y,

© Alexander K. Seevald

Start with a,=0 for all i. This ensuresthat Za,y,=0 initially.
Choose a; , a; arbitrarily (usually by heuristic to speed up convergence)
The partial solution for a; and a; can be computed analytically:

new,unc =OCOId + yj ((f(xi)_yi)_(f(xj)_yj))

This brings us one step
nearer to the solution by
incressing L while
maintaining the simpler
constraints for the dual
problem, i.e. 2a,y,=0
Repeat until convergence
Determine By=Y;-f(X))
(computing f(x) with
B,=0) by averaging over
al support vectors 0<a;,<A
(implies ¢;=0) for
numerical stability.

aex@seavald.at / alex.seevald.at

19

Complexity parameter A

Influence of A on SVM performance
Linear kerne (@(x)=x, d=1), A=0.01
 Focusses more on data which is further away

from the maximum margin hyperplane. Bigger
margin reflects this behaviour. Error = 30.0%

Training Error: 0.26 27
Test Error: 0.30

Bayes Error: 0.21

Linear kernel (¢(x)=x, d=1), A=10000

» Focuses more on data which is nearer to the
maximum margin hyperplane. Smaller margin
reflects this behaviour. Error = 28.8%

In both cases, all examples which are on the wrong
side of the margin are given weight depending
on their distance from the margin.

As we @n see the example is not well separable

Training Error: 0.270
Test Error: 0.288
Bayes Error: 0.210

with just alinear kernel. Can we do better?

© Alexander K. Seevald
aex@seavald.at / alex.seevald.at

20

Non-linear Kernel Functions

| nfluence of Kernel on SVM performance

polynomial kernel of degree d=4, A=1

 Non-linear dedsion boundary, small margin;
dightly better generalizaion performance but

tends to overshoot at the boundaries (a ammon
problem of polynomials): Error = 24.5%

N
Training Error: 0.180

Test Error: 0.245 :i:
Bayes Error: 0.210 * '

Gaussian (RBF) kernel, c=0.01, A=1

 Non-linear dedsion boundary, larger margin;
but almost optimal generalization performance.
Error = 21.8% vs. optimal Bayes Error = 21.0%.
This is probably due to the synthetic dataset
which was generated by a mixture of Gaussian

/Nic . TR L S
distributions
. TestEror: 0218 1 i iiiiiiiomselll ;

Bayes Error: 0.210

© Alexander K. Seevald
aex@seavald.at / alex.seevald.at

21

