
© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

1

Decision Trees

Lektor Dr.techn. Alexander K. Seewald
Österreichisches Forschungsinstitut

für Artificial Intelligence

Outlook?

Humidity? Windy?

sunny rainyovercast

yes

yes no yes no

≤75 >75 false true

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

2

What is a Decision Tree?

A recursive structure of attribute/class value decisions...

...which is equivalent to a set of rules, one for each path from the root node:

outlook=sunny & humidity≤75 ⇒ yes

outlook=sunny & humidity>75 ⇒ no

outlook=overcast ⇒ yes

outlook=rainy & windy=false ⇒ yes

outlook=rainy & windy=true ⇒ no

Outlook?

Humidity? Windy?

sunny rainyovercast

yes

yes no yes no

≤75 >75 false true
Leaf node
(= class
decision)

Intermediate
node

(numeric split)

Splitpoint for
numeric

attr. (=75)

Root node
(nominal split)

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

3

Basic Observations

Some basic observations on decision trees in general

• If we have once split on a nominal (qualitative) attribute, another split on the
same attribute is meaningless - all examples within each subtree already have
the same value for this attribute. Multiple splits on numeric (quantitative)
attributes are possible, with different splitpoints, but at most s-1 for s unique
values – log2(s) if we always spli t at the median value of each set.

• The number of examples in each subtree will be smaller than the number at
each node, provided we follow 1. and the attribute is not constant over all
examples. In the latter case, splitting is also meaningless.

1. and 2. show that this process will stop at (possibly multiple) examples with

exactly the same attribute values - regardless of how we split!

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

4

Basic Observations (2)

3. Provided training data is consistent (i.e. no two examples have exactly the
same values for all attributes and different classes), and we do not stop before
each leaf contains examples with the same values for all attributes, each tree
stores the full training data (disregarding example order), again regardless of
how we split. There are exponentially many trees which are fully consistent
with training data (i.e., 100% accuracy)

Problem: Which tree to choose among those consistent with training data?

Common Heuristic: Ockhams Razor

“ Non sunt multiplicanda entia praeter necessitatem.”

(Entities should not be multiplied beyond necessity.)

William of Ockham (1290? - 1349?)

Translation: Prefer the smallest/simplest theory among all consistent ones.

However, it is generally not feasible to exhaustively search for the smallest tree.

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

5

Top-Down Induction of Decision Trees

Prominent members: ID3, C4.5, CART, ...

Recursive algorithms

• Creates decision tree step-by-step

• Begins with an empty tree

Heuristic algorithms

• Aims at constructing a small tree, but cannot guarantee that it will find the
smallest tree – since that would mean constructing all possible trees.

Greedy algorithms

• At each step, makes decision (which attribute/spli tpoint to choose) based on a
local optimali ty criterion (information gain)

• Blind to attributes that are relevant only in combination

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

6

ID3+

• Bias: Low. Smaller trees are preferred over longer trees. Trees that place high
information gain attributes close to the root are preferred to those that do not.

• Variance: High. A single example may change the tree completely.

Pseudocode for ID3+ (i.e. ID3 extended with numeric attribute splits)
Start with root node and given all training examples

If all examples in current node belong to same class =>
make current node a leaf node and EXIT

Select best nominal attribute, or best attribute /
splitpoint combination for numeric attribute.

Create branch + subnodes for all values for nominal
best attribute, or for < and >=splitpoint if best
attribute is numeric.

Split training examples according to values of best
attribute into subsets for each subnode.

Call ID3+ recursively for each subnode node with the
appropriate subset of training examples.

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

7

Decision Tree - Bias & Variance

Low bias, high variance. Numeric attributes are split binary via splitpoint.
Concept boundaries are axis-parallel hyperrectangles (see above)

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

8

What is the best local split?

Intuition: The attribute which best discriminates between the classes, and thus is
likely to create a small tree.

⇒ Information gain: Expected increase in information (=reduce in entropy) if data
are split by the values of the attribute (Information Theory by Shannon)

Notation (assumes two classes)

A ... some attribute with possible values v1, ..., vk

C ... set of training examples associated with current node

N ... number of examples in C (N = |C|)

p, n ... number of positive / negative examples in C (p+n = N)

pi, ni ... number of positive / negative examples in subnode Ci

C=A?

C2C1 C3 Ck...

v1 v2 v3 vk

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

9

Entropy & InfoGain

Entropy(C) = – p/(p+n) log2 p/(p+n) – n/(p+n) log2 n/(p+n)

Entropy is a measure of the "impurity" of set C with respect to the class labels

InfoGain(C,A) = Entropy(C) – Σ|Ci|/|C| * Entropy(Ci)

InfoGain is the expected reduction in entropy if the data is split along values of
attributes A. ID3 selects attribute with highest InfoGain in each step.

Note: Entropy(C) is independent of A → maximizing InfoGain(C,A) is equivalent
to minimizing the second term, i.e the weighted sum of entropies.

C=A?

C2C1 C3 Ck...

v1 v2 v3 vk

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

10

Splitting on numeric attributes

For numeric attributes, splitting on all possible values leads to weak generalization
→ Binary split on a single value (=threshold, splitpoint). This is done by

considering all (reasonable) split points and computing InfoGain for each of
them. Among all information gain values from nominal attributes, and all
splitpoints from numeric attributes, the maximum is chosen by ID3.

Example: Split on humidity from the weather dataset. E(C) = 0.940 [bits]
67.5 (1/0 vs. 8/5) → InfoGain = 0.048 [bits]
72.5 (3/1 vs. 6/4) → InfoGain = 0.015 [bits]
82.5 (6/1 vs. 3/4) → InfoGain= 0.152 [bits] (best splitpoint for humidity)
85.5 (6/2 vs. 3/3) → InfoGain = 0.048 [bits]
88.0 (7/2 vs. 2/3) → InfoGain = 0.102 [bits]
90.5 (8/3 vs. 1/2) → InfoGain = 0.079 [bits]
95.5 (8/5 vs. 1/0) → InfoGain = 0.048 [bits]

Hum. = 65 70 75 80 85 86 90 91 95 96
Play=yes 1 2 1 2 0 1 1 0 0 1
Play=no 0 1 0 0 1 0 1 1 1 0

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

11

Example: Choose root node for weather

Choose attribute with highest InfoGain

InfoGain(Outlook) = .940 – 5/14*.971 – 4/14*0.00 – 5/14*.971 = 0.246 [bits]
InfoGain(Windy) = .940 – 8/14*.811 – 6/14*1.00 = 0.048 [bits]
Best splitpoint for numeric attribute humidity (82.5) = 0.152 [bits]
Best splitpoint for numeric attribute temperature (84.0) = 0.113 [bits]

Overall best split: Outlook = Root node
Propagate examples into three subnodes according to values of Outlook...

Outlook?

sunny rainyovercast

yes=4
no=0

yes=2
no=3

yes=3
no=2

Windy?

false true

yes=6
no=2

yes=3
no=3

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

12

Example: Choose root node for weather (2)

Call ID3+ recursively for each subnode node with the
appropriate subset of training examples (see above)

Outlook?

sunny rainyovercast

O utlo o k T H W indy P la y?
sunny 6 9°F 7 0% f al se yes
sunny 7 5°F 7 0% true yes
sunny 8 5°F 8 5% f al se n o
sunny 8 0°F 9 0% true n o
sunny 7 2°F 9 5% f al se n o

O utlo o k T H W indy P la y?
overcast 64°F 65% true yes
overcast 81°F 75% f al se yes
overcast 83°F 86% f al se yes
overcast 72°F 90% true yes

O utlo o k T H W indy P la y?
rai ny 6 5°F 7 0% true n o
rai ny 6 8°F 8 0% f al se yes
rai ny 7 5°F 8 0% f al se yes
rai ny 7 1°F 9 1% true n o
rai ny 7 0°F 9 6% f al se yes

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

13

Common Problem with DTs: Overfitting

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

14

How to avoid Overfitting for DTs

Pre-Pruning

Stop spli tting a node further (even if it still contains examples of different classes,
and even if some attributes are still available) if there seems to be no statistically
significant correlation between attributes and classes

Post-Pruning

First construct (possibly complex) tree that is maximally consistent with the
training data (i.e., has minimum error on training data)

Then simplify the tree by cutting off branches and subtrees that seem harmful.

Effects of Pruning

• Simpler trees with lower accuracy on the training data but possibly higher
accuracy on new, unseen data.

• Improves handling of attribute and class noise

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

15

Pre-Pruning

Pre-Pruning: X2 Test
(pronounced: Chi-Square)

If A is completely irrelevant to the class of an object in C, the expected value of
pi is pi' = p * |Ci|/|C| and the expected value of ni is ni' = n * |Ci|/|C|, where p
and n are the number of positive resp. negative examples of the class.

⇒ The larger the differences |pi - pi'| and |ni - ni'| , the smaller the likelihood that
A is completely irrelevant.

⇒ Statistic is approximately X2 distributed with k-1 d.o.f.

⇒ Perform X2 test: S large enough? (Intuition: the smaller S, the higher the
probabilit y that A is irrelevant to the class (i.e., class is independent of A))

⇒ Prune (stop refining a node) if there is no relevant A at given confidence level

C=A?

C2C1 C3 Ck...

v1 v2 v3 vk

p/n

p1/n1 p2/n2 p3/n3 pk/nk

∑
=

−− +=
k

i
n
nn

p
pp

i

ii

i

iiS
1

'
)'(

'
)'(22

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

16

Post-Pruning

Reduced Error Pruning (Pseudocode)

1. Randomly split training examples TD into a training set TS (usually 70%) and
a pruning (validation) set PS (usually 30%)

2. Learn a (possibly complex) tree from TS that is as consistent with the data as
possible (i.e., that possibly overfits the data)

3. Perform tree simpli fication step:

For each subtree Ti of T, tentatively replace Ti by a majority class leaf

4. Compare the accuracy on PS(!) for all modified subtrees with accuracy of
original T on PS:

• If there is no Ti that improves accuracy on PS when removed: exit

• Otherwise: remove (and replace with leaf) Ti with maximum improvement.

5. Go to 3.

Question: Why additional pruning set PS? Why not use original training set TD
for making pruning decisions?

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

17

Post-Pruning without Validation Set: PEP

Pessimistic Error Pruning (PEP)

(used in well-known C4.5 decision tree learner)

Replace subtree Ti by a majority class leaf, if and only if

E+0.5 < ∑ J + L(Ti)/2 + SE

where...

∑ J number of training set errors for subtree Ti before replacing

E number of training set errors when replacing Ti by a leaf (only for
those examples which are within the subtree Ti)

L(Ti) total number of leaves in subtree Ti

SE standard error:

∑ K number of examples in subtree Ti (=pi+ni=|Ci|)

+ no need for validation set - all training data can be used; very efficient

– heuristic is ad-hoc and not reasonably grounded in statistical theory

∑
∑ +−∑∑ +

K

TLJKTLJ ii))2/)((()2/)((

