
© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

1

Inductive Rule Learning &
Support Vector Machines

Lektor Dr.techn. Alexander K. Seewald
Österreichisches Forschungsinstitut

für Artificial Intelligence

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

2

Two Ways To Learn

Divide-and-Conquer: Apply recursively! Choose best attribute at top and
then recursively create rules for each subset instead of just counting the
most common class. Repeat until "pure" (=only examples of the same
class). This creates a decision tree of attribute and class values.

⇒ Decision Tree Learning (as we already saw)

Separate-and-Conquer: Learn best rule for a subset of training data,
remove both positive examples which are correctly classified and those
negative examples erroneously classified as positive (latter examples
should number few or none). Apply this algorithm recursively until
very few or no positive examples remain. This creates a rule set for
classification.

• Not as efficient as divide-and-conquer, but has other advantages: More
compact than decision trees, a modular and easily understandable
representation and the abili ty to learn partial models.

⇒ Inductive Rule Learning

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

3

Rule Sets - Bias & Variance

Low bias, high variance. Concept boundaries are axis-parallel
hyperrectangles (see above), one for each rule within the ruleset.

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

4

Separate-And-Conquer Rule Learning

Learning Rule Sets: Sequential Set Covering Algorithm
procedure LearnRules(c,TD)
Rules := { } ; Pos := { xi ∈ TD | yi = c} ;
Neg := { xi ∈ TD | yi ≠ c} ;
repeat

Rule := FindBestRule(c,Pos,Neg);
Pos := Pos \ Covers(Rule,Pos);
Neg := Neg \ Covers(Rule, Neg);
Rules := Rules ∪ Rule;

until RuleSetStopCrit(Rules,Pos,Neg);
return (Rules);

Simplest stopping criterion 2:

RuleStopCrit = true if the rule
covers no more negative

examples, i.e., Neg = {} . Such a
rule is called consistent.

procedure FindBestRule(c,Pos,Neg)
Rules := { ⇒ c } // ← create default rule
while not RuleStopCrit(Rule,Pos,Neg) do

Rule := Rule ∪ FindBestCondition(Pos,Neg);
Pos := Covers(Rule,Pos);
Neg := Covers(Rule,Neg);

endwhile; return (Rule);

Simplest stopping criterion 1:

RuleSetStopCrit = true if all
positive examples are covered by
the current rule set, i.e. Pos = {}

A rule covers an example if the conditions of the rule match the attribute values
of the example. Rules always predict the positive class.

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

5

How to find the best rule?

Given set of positive / negative examples, find best rule (=set of conditions) that

• Covers many positive examples

• Covers few or none negative examples

• Is as simple as possible (Ockham's razor)

Exhaustive search is impossible since this would have to consider all possible
subsets of rule conditions (np for p nominal attributes each having n-1 possible
values). Heuristic search is needed, but gives no guarantee of best solution.

General search directions

• Bottom-up (specific-to-general)

Start with a very long list of conditions (e.g. the complete description of one
positive example) and delete conditions one by one (step-wise generalization)

• Top-down (general-to-specific)

Start with empty rule (no conditions) and add conditions one by one (step-wise
specialization). Similar to our version of FindBestRule.

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

6

Heuristic Search Algorithms

• Hill-climbing

At each step, add or drop the condition (from all possible conditions) that
maximises some local heuristic evaluation measure.

Problem: short-sighted and greedy.

• Beam search

Always keep a list of n alternative refinements; expand the currently best one
(according to some local heuristic). Explores larger portion of search space
and can find globally better solutions. Less short-sighted, but stil l greedy.

• Best-first search

Explore all possible solutions, always focusing on the most promising first. If
unrestricted, explores full search space. Must be accompanied by search
pruning. Still ineff icient, but can guarantee to find best solution.

...

Most commonly used

• Top-down search with hill -climbing (as in FindBestRule) or beam search.

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

7

How to find best condition to add?

General approach for FindBestCondition: test all
possible conditions and choose the best one
according to heuristic, e.g. max.ent. & (p>n).

Example: Weather dataset, yes=positive examples
(target), no=negative examples.

• Partial rule { outlook=rainy ⇒ yes} . Covers 5
examples: 3 positive and 2 negative.

Possible conditions for improvements:
Temp < 66.5 (0+,1-) Humidity ≥ 75 (3+,1-)
Temp ≥ 66.5 (3+,1-) Humidity < 75 (0+,1-)
Temp < 70.5 (2+,1-) Windy=false (3+,0-)
Temp ≥ 70.5 (1+,1-) Windy=true (0+,2-)
Temp < 73.0 (2+,2-) ...
Temp ≥ 73.0 (1+,0-)
• Choose Windy=false. Refined rule is now

{ outlook=rainy & windy=false ⇒ yes} . Covers
3 positive and 0 negative examples.

⇒⇒ We have found a consistent rule and return it

O ut look T H W indy P lay?
overcast 64°F 65% true yes

r a iny 65°F 70% t r ue n o
sunny 69°F 70% f al se yes
sunny 75°F 70% true yes

overcast 81°F 75% f al se yes
r a iny 68°F 80% false yes
r a iny 75°F 80% false yes
sunny 85°F 85% f al se n o

overcast 83°F 86% f al se yes
sunny 80°F 90% true n o

overcast 72°F 90% true yes
r a iny 71°F 91% t r ue n o
sunny 72°F 95% f al se n o
r a iny 70°F 96% false yes

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

8

Heuristic Evaluation Functions

Notation:
P ... the total number of positive examples in training data TD
N ...the total number of negative examples in training data TD

r’ ... the current (incomplete) rule
p’ ... the number of positive examples covered by r’

n’ ... the number of negative examples covered by r’

r ... the rule resulting from adding a condition to r’

p ... the number of positive examples covered by r
n ... the number of negative examples covered by r

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

9

Heuristic Evaluation Functions

NP
N

np
n

NP
P

np
p

np

n

np

p
rCE

np

n

np

n

np

p

np

p
rE

rPrIC

np

p
rP

np
NP

nNp
rA

prC

+

+

+

+

+
−

+
−=

++
−

++
−=

−=
+

=

−≅
+

−+=

=

22

22

2

loglog)(:Entropy Cross

loglog)(:Entropy

)(log)(:Contentn Informatio

)(:Purity

)(
)(:Accuracy

)(:Coverage Positive

Basic Heuristics

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

10

Heuristic Evaluation Functions

Basic Heuristics (2)

()()
()()

))'()()(()(:Gainn Informatio Weighted

''
:Gain Coverage

)(1)(1
)(:nCorrelatio

)(:Estimate

2

1
)(:Estimate Laplace

''

2
''

)(2
''
''

''
)(

''
''

''

rICrICrCrWIG
N

nn

P

pp
CG(r)

rCorr

mnp

mp
rMm

np

p
rLAP

ppfnnntn

np
fntnnp

np
np

np
fntnnp

np
np

np
nfntnp

NP
P

−−=

−−−=

−−

−
=

++
+

=−

++
+=

−=−=

+
+−+

+
−

+
+−+

+
−

+
−−+

+

HeuristicsGain

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

11

Overfitting Avoidance: Pre-Pruning

Basic ideas

• Stop refining a rule although it is still inconsistent (i.e. covers neg. instances)

• Stop adding new rules although some positive instances are still not covered.

Basic method

• Modify stopping criteria RuleSetStopCrit, RuleStopCrit in LearnRules et al.

Commonly used criteria

• Minimum Purity: If the best next rule that can be found is below a specified
purity threshold (Purity(r) < ε), stop adding rules (⇒ RuleSetStopCrit)

• Encoding Length Restriction: Number of bits needed to encode a rule must
be less than number of bits needed to code the covered examples. I.e., stop
refining a rule when it would become too complex (⇒ RuleStopCrit)

• Significance Test: Stop adding conditions to a rule if none of the conditions
shows a pre-specified minimum correlation with the class labels, similar to
pre-pruning via X2 in DT slides (⇒ RuleStopCrit)

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

12

Overfitting Avoidance: Post-Pruning

Basic idea

First learn a (possibly large) set of (possibly complex) rules that fit the training
data well; then gradually simpli fy the rule set by

• Dropping conditions in rules (⇒ simpli fying/generalizing the rules)

• Dropping entire rules (⇒ simpli fying/generalizing the model)

A standard method: Reduced Error Pruning (~ DTs)

• Split training set into a growing set (e.g., 70%) and a pruning set

• Learn theory from growing set

• Simpli fy theory stepwise

Consider dropping conditions and dropping rules. Always perform (greedily)
the simplification step that produces the greatest improvement in e.g. accuracy
on the pruning set until no step improves the rule set anymore.

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

13

Reduced Error Pruning for Rule Learning

Reduced Error Pruning

procedure REP(TD, SplitRatio)

SplitExamples(SplitRatio, TD, GrowingSet, PruningSet);

Model := LearnRules(GrowingSet);

NewModel := BestSimpli fication(Model, PruningSet);

while Accuracy(NewModel, PruningSet) ≥ Accuracy(Model, PruningSet)

Model := NewModel;

NewModel := BestSimpli fication(Model, PruningSet);

endwhile;

return (Model);

Further improvements on REP (which has a worst-case complexity of O(n4))

• Incremental REP (IREP): Prune each rule separately, removing covered
examples from GrowingSet and PruningSet. Remaining instances are
redistributed into new Growing/PruningSet. Stop when predictive accuracy on
PruningSet is below baseline accuracy (i.e. accuracy of the empty rule ZeroR)

• Repeated Incremental Pruning to Produce Error Reduction (RIPPER):
Optimized version of IREP which runs the learning process multiple times.

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

14

Support Vector Machines

Initially, a linear model in x. We don' t minimize residual squared error (RSS)
or log-likelihood, but maximize the margin ||β|| resp. minimize C=1/||β||. f(x) =
xT.β+β0 is our function/model, where yi∈{ +1,-1} (i.e. the sign of f(x)
determines the class), but the weights β and constant term β0 are determined
differently. This new regularization again guarantees an unique solution.

• If the data is linearly separable, we minimize ||β|| subject to the constraints
yi(xi

T.β+β0)≥1 for ∀ i=1,2,...|TD|. See top left figure.
• If the data is not linearly separable, we

introduce slack variables ξi to let
some examples be on the wrong
side of the margin. See top right figure.







≈≤≥

−≥+

∑
=

�

��

���

y

� TD

i
ii

ii

1
constant,0

1)(
 subject to min ||

1

0
T
ix

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

15

Support Vector Machines (2)

This optimization problem is quadratic with linear inequality constraints and is
thus convex. A quadratic programming solution using Lagrange multipliers is
therefore feasible. An equivalent form of the nonseparable case is:

Parameter λ determines the weight given to optimizing the slack variables ξi
versus optimizing the margin. The separable case corresponds to λ=∞.
The Lagrange primal function combines minimalization and constraints into a
single formula. The constraints are weighted by Lagrange multipliers αi and µi.

which will be maximized w.r.t. β, β0 and ξi. Setting the derivates to zero yields:

∑ ∑∑
= ==

−−−+−+=
||

1

||

1
0

||

1

2
)]1()([

2

1 TD

i

TD

i
iiiii

TD

i
ip

�����

y����

L T
ix

)for resp.(0)1()(

0)]1()([;0)(

solution) a (indicates conditionsTucker -Kuhn-Karush theand

2

1
function objective dual (Wolfe) Lagrange theyields into ngSubstituti

0,,

0

0

0

||

1

||

1

||

1||

1

||

1

i

���

y

���

y����

yy���L

L

�	�

��	

y�

y��

ii

iiiii

TD

i

TD

j
jiji

TD

i
iD

P

iii

ii

TD

i
ii

TD

i
ii

∀≥−−+

=−−+=−

−=















≥
−=

=

=
∑∑∑

∑

∑
= ==

=

=

T
i

T
i

j
T
i

i

x

x

xx
x

i

��

y

��

iii

TD

i
i ∀−≥+≥+ ∑

=
1)(,0 subject to

2

1
min 0

||

1

2 T
ix

A high-bias learner: Perceptron

Perceptron (linear binary threshold unit, linear model)
• Computes a linear function of x (assume adding an x0=1 to x, so that constant

term w0 can be handled). f(x) = sign(xT.w). w is initialized randomly.
• Perceptron training rule: w ← w+η(y-f(x)).xT, where y is the true output value

from training data (±1), and η is the learning rate.
• Intuitively, concept boundary is a hyperplane which separates classes +1 & -1.

Update rule is applied to each training example in turn, repeating until all
training examples are classified correctly. Provided η is small enough, and the
training set is linearly separable, this algorithm converges in a finite number of
steps. If data is not linearly separable, convergence is not assured.

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

If the weight vector w is
initially set to all zeros,
the final w after
convergence will be a
linear combination of the
training examples, similar
to a SVM.

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

17

Support Vector Machines (3)
Features of the optimization problem for SVMs
• No local minima, only one global minimum – the maximal margin hyperplane.
• To solve the dual problem we need only the dot product xi

Txj for each
combination of training instances. The function computing the dot product,
K(u,v) is called kernel. This kernel trick enables us to expand the original
feature space via φ(x), thus learning a maximum margin hyperplane in higher-
dimensional feature space which gives a nonlinear decision boundary in the
original, lower-dimensional feature space. Usually only a few αi are nonzero -
the associated examples xi are called support vectors.

product.dot the)()()()(and)(:

)()(),(where),(
2

1

1

||

1

||

1

||

1

==⋅>>ℜℜ

⋅=−=

∑

∑∑∑

=

= ==

m

i
ii

mp

TD

i

TD

j
jiji

TD

i
iD

vuvupm

vuvuKKyy���L

φφφφφ

φφ

�

ji xx

• The weight vector β is a linear combinations of training examples xi . We can
use this relation to compute model f(x) via the kernel function. This allows us
even an infinite-dimensional φ(x), i.e. m=∞, without explicit computation of β.

∑
=

+=
||

1
0),()(

TD

i
ii

�
Ky�f ixxx

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

18

Example: A Polynomial Kernel of Degree 2

Usually only the kernel function K(u,v) is defined explicitl y, and the feature
mapping φ is defined implicitl y. Not all functions can be written as dot product

⇒ Necessary and suff icient conditions for a kernel function in the finite case

• Symmetry: K(u,v)=K(v,u)

• Cauchy-Schwarz Inequality: K(u,v)2≤K(u,u)K(v,v)

• Kernel Matrix K is positive semi-definite

(xTKx≥0 for all x≠{ 0} p)

In the infinite-dimensional case: Mercer' s Theorem

Common kernel functions

polynomial kernel of degree d: K(u,v)=(<u.v>+c)d (linear kernel if d=1)

Radial basis function (RBF): K(u,v)=exp(-||u-v||2/c)

Kernels may be used as background domain knowledge, but are quite opaque.

),(
)1,1(),(

1

),(

)1,1(),(111

2

1

2

)()(usingproduct dot a toequivalent iswhich

))((),(

pp
jiji

p

i

pp

ji
jiji

p

j
jiji

p

j
jj

p

i
ii

p

i
ii

uuu

vvuuvvuuvuvuvuvuvuK

=

= =====

=

=











=





=⋅= ∑ ∑∑∑∑∑

φ

()),(

)1,1(),(
),(nn

ji
K

=
= ji xxK

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

19

Sequential Minimal Optimization (SMO)

Many ways exist to solve the dual optimization problem iteratively. We wil l focus
on one simple algorithm, Sequential Minimal Optimization (SMO).

• Start with αi=0 for all i. This ensures that Σαiyi=0 initially.

• Choose αi , αj arbitrarily (usually by heuristic to speed up convergence)

• The partial solution for αi and αj can be computed analytically:

()







=+
≠+−

=







=−+
≠−

=

−+=









<
≤≤

>
=

−+
−−−

+=

ji
old
i

old
j

ji
old
i

old
j

ji
old
i

old
j

ji
old
i

old
j

new
j

old
jji

old
i

new
i

uncnew
j

uncnew
j

uncnew
j

uncnew
j

new
j

jijold
j

uncnew
j

yy��

�

yy

�

��

�

V

yy

�

��

yy��

U

��yy��

U�U

V�U�

V�V

�

KKK

yfyfy

��

 if),min(

 if),min(

 if),0max(

 if),0max(

)(

 if

 if

 if

),(2),(),(

))(())((

,

,,

,

,

jijjii

ji

xxxxxx

xx This brings us one step
nearer to the solution by
increasing LD while
maintaining the simpler
constraints for the dual
problem, i.e. Σαiyi=0
Repeat until convergence
Determine β0=yi-f(xi)
(computing f(x) with
β0=0) by averaging over
all support vectors 0<αi<λ
(implies ξi=0) for
numerical stability.

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

20

Complexity parameter λλ
Influence of λλ on SVM performance
Linear kernel (φ(x)=x, d=1), λ=0.01
• Focusses more on data which is further away

from the maximum margin hyperplane. Bigger
margin reflects this behaviour. Error = 30.0%

Linear kernel (φ(x)=x, d=1), λ=10000
• Focusses more on data which is nearer to the

maximum margin hyperplane. Smaller margin
reflects this behaviour. Error = 28.8%

In both cases, all examples which are on the wrong
side of the margin are given weight depending
on their distance from the margin.

As we can see, the example is not well separable
with just a linear kernel. Can we do better?

© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

21

Non-linear Kernel Functions

Influence of Kernel on SVM performance

polynomial kernel of degree d=4, λ=1

• Non-linear decision boundary, small margin;
slightly better generalization performance but
tends to overshoot at the boundaries (a common
problem of polynomials): Error = 24.5%

Gaussian (RBF) kernel, c=0.01, λ=1

• Non-linear decision boundary, larger margin;
but almost optimal generalization performance.
Error = 21.8% vs. optimal Bayes Error = 21.0%.
This is probably due to the synthetic dataset
which was generated by a mixture of Gaussian
distributions.

