Automated Characterization of Osteoclasts via Image Processing Methods

Alexander K. Seewald, PhD

Background

Bone is continually being resorbed and replaced to repair microdamage, adapt to changing mechanical loads, and to enable calcium homeostasis.
Osteoclasts are bone-resorbing cells in marrow whose pathology is implied in osteoporosis \& rheumatoid arthritis. Osteoporosis is the most common bone disease and is characterized by loss of bone mineral density (BMD) and deterioration of bone microarchitecture.

Proposed Method - Staining

Methods (Staining)

- cell: alpha-tubulin \& calcitonin receptor (white)
- nuclei: DAPI (blue)
- precursor/non-osteoclast: F4/80 macrophage marker (red)

Proposed Method - Algorithm

-Criterion 1 computes the ratio of the macrophage marker inside the cell versus the total area of the cell

$$
\frac{\operatorname{amount}(\text { macrophage marker })}{\text { area of cell }}<T_{1}
$$

-Criterion 2 counts the amount of DAPI staining inside the cell

$$
\operatorname{amount}(D A P I)>T_{2}
$$

TRAP vs. Immunofluorescence

Proposed Method vs. Experts

Conclusion

TRAP-staining and manual counting of osteoclasts (most common)

+ very fast (tissue to staining $\sim 15 \mathrm{~min}$)
- only the number of osteoclasts is obtained
- counts differ stochastically and systematically between individuals (high variation coefficient)
- no additional proteins can be measured

Immunofluorescence staining and automated analysis (prop. method)

+ pixelwise identification of osteoclasts (full shape and type of each cell) enables powerful analytics, e.g. mean and standard deviation of protein expression normalized by cell, cell area, cell circumference, ...
+ additional proteins can be measured
+ fully consistent repeatable results due to automated image analysis
- preparation of tissue takes longer (~ days)

