## Automated Characterization of Osteoclasts via Image Processing Methods





#### Alexander K. Seewald, PhD



## Background



Bone is continually being resorbed and replaced to repair microdamage, adapt to changing mechanical loads, and to enable calcium homeostasis. Osteoclasts are bone-resorbing cells in marrow whose pathology is implied in osteoporosis & rheumatoid arthritis. Osteoporosis is the most common bone disease and is characterized by loss of bone mineral density (BMD) and deterioration of bone microarchitecture.

SOLUTIONS

© 2012



## **Proposed Method - Staining**



Base image

Algorithm output

Methods (Staining)

- cell: alpha-tubulin & calcitonin receptor (white)
- nuclei: DAPI (blue)
- precursor/non-osteoclast: F4/80 macrophage marker (red)

### **Proposed Method - Algorithm**



alex@seewald.at www.seewald.at

© 2012

SOLUTIONS



### **TRAP vs. Immunofluorescence**



© 2012 SOLUTIONS

alex@seewald.at www.seewald.at

#### **Proposed Method vs. Experts**





© 2012

alex@seewald.at www.seewald.at

# Conclusion

#### TRAP-staining and manual counting of osteoclasts (most common)

- + very fast (tissue to staining ~ 15min)
- only the number of osteoclasts is obtained
- counts differ stochastically and systematically between individuals (high variation coefficient)
- no additional proteins can be measured

#### Immunofluorescence staining and automated analysis (prop. method)

- + pixelwise identification of osteoclasts (full shape and type of each cell) enables powerful analytics, e.g. mean and standard deviation of protein expression normalized by cell, cell area, cell circumference, ...
- + additional proteins can be measured
- + fully consistent repeatable results due to automated image analysis
- preparation of tissue takes longer (~ days)



alex@seewald.at www.seewald.at