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Abstract

We develop and discuss automated and self-adaptive systems for detecting
and classifying botnets based on machine learning techniques and integration
of human expertise. The proposed concept is purely passive and is based
on analyzing information collected at three levels: (i) the payload of single
packets received, (ii) observed access patterns to the darknet at the level of
network traffic, and (iii) observed contents of TCP/IP traffic at the protocol
level.

We illustrate experiments based on real-life data collected with a darknet
set up for this purpose to show the potential of the proposed concept for
(i) and (ii). In (iii) we use a small spamtrap as darknets cannot capture
TCP/IP traffic data, so this experiment is not a purely passive approach,
but traffic moving through a network could be analyzed in a similar way to
obtain a purely passive system for this step as well.
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1. Introduction

Undoubtedly spam is a problem of global impact that keeps getting big-
ger. Already in 2001, according to a study undertaken for the European
Commisson [12], Internet subscribers worldwide wasted an estimated 10 bil-
lion Euro per year just in connection costs due to spam. Moreover, the
quantifiable damage caused by successful phishing attempts was estimated
to be millions of Euros in Germany in 2006.1 The total damage caused
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is even higher, since these figures do not yet account for loss of reputa-
tion and reduced customer trust. The economic impact is only part of the
problem—waste of time, resources and the gradual erosion of trust in e-mail
communication must also be considered significant side-effects of the spam
deluge.

Spam filters have become reasonably effective by now (see, for exam-
ple, [21, 5]). However, new challenges, such as new forms of image spam
and audio-based spam may lead to decreasing performance of today’s most
widely used Bayesian spam filters. More generally, history has shown that
spammers have adapted again and again to effective adversaries and counter-
measures. Most of the widespread countermeasures against spam are reactive
in nature and thus this “arms race” is very likely to continue in the future. In
particular, it is a big challenge to reduce the overhead and waste of resources
caused by spam [13, 10].

But spammers are already diversifying their operations, e.g. with phish-
ing—faking whole online banking websites to harvest login and transaction
data from a large userbase, which motivates the investigation of methods
specifically targeted for this challenge [11]. Recently, a widespread vulner-
ability in today’s DNS system has been detected which would have allowed
spammers to fake DNS entries and thus forward legitimate banking sites’
URLs to the spammers’ sites, bypassing the current more costly harvesting
effort via phishing mails with embedded links to the faked sites, which de-
pend on user naivety. Although the vulnerability has been partially fixed
in the meantime [3], sufficient vulnerable servers still exist for this to be a
continuing threat.

Another alternative source of revenue comes from Pump-and-dump spam,
which is an approach to link spamming directly to the market. By sending
out millions of spam mails which aim to boost a specific company’s share
value, the resulting small transient peak or following valley2 is used to make
money directly via leveraging in form of call or put options.

Both approaches make the spammers’ revenue independent of companies
paying for their services. Recent news about systematically stolen user data
of large companies, to be used, e.g., for identity theft and credit card fraud,
is another indication for that. By diversifying their sources of revenue, spam-
mers’ will in time become more independent and botnets will find new uses.

2Once people notice they have been fooled, they are desparate to sell.
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Most if not all of today’s spam is sent via large networks of captured
machines which are under direct control of spam operators.3 These large
networks have been named botnets, from software robot networks. One of
the largest spamfilter companies, SpamHaus4, has estimated that already in
2004, 70% of spam was sent out via such networks [16]. Computers without
the latest security updates attached to the internet may be infected rapidly
depending on the security of their operating system – via known security
holes, by users clicking or only viewing infected mails or via surfing past an
appropriately prepared webpage, using browser or browser plugin vulnera-
bilities. Even secure computers may be prone to zero-day attacks, which rely
on the delay between the publication of a weakness and the availability of a
patch to correct it. There are some indications that botnet operators invest
in R&D to find specific zero-day vulnerabilites, aiming at exploiting them at
leisure. At least a million bots are known to exist according to the US FBI
and public trackers like ShadowServer5, and the true number is likely to be
much higher. Another worrying development is that although the security
of newly deployed systems is clearly increasing, the number of bots is still
growing at an exponential rate. This indicates that the potential to build
new and larger botnets is not exhausted yet. A bot, being subverted, can
harm the user in any number of ways: by capturing passwords, PIN and
TAN numbers for telebanking, rerouting their online banking website to a
page under the spammer’s control, and so on.

By distributing their workload over several hundreds or thousands of ma-
chines, spammers are able to use combined bandwidth of gigabits per second
to send out spam rapidly. But bots are not only used to send out spam.
Different bots exist which attack large parts of the internet infrastructure
via distributed denial-of-service attacks (DDoS6), install backdoors and spy-
ware to harvest password and login information and allowing direct access to
all files accessible from the machine, defraud ad networks with pay-per-click
systems like Google AdSense by faking millions of clicks from hundreds of
thousands of machines, crack weak passwords in a brute-force manner by us-

3According to SpamHaus, about 300-400 spammers are responsible for 80% of world-
wide spam [18].

4www.spamhaus.org
5www.shadowserver.org
6These attacks are very effective and were in the past able to bring down the internet

infrastructure of small countries.
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ing the botnet as a computational grid to distribute workload among a large
set of machines, or create specialized peer-to-peer networks for obfuscating
the operator’s point of origin.

The ease with which it is possible to create new malware variants for
infecting machines with bots has human analysts at a great disadvantage.
While botnet operators are able to automatically generate new malware vari-
ants in unprecedented numbers, out of necessity the anti-virus community has
become focussed on just detecting malware. It clearly has become infeasible
to analyze manually what each of the thousands of new variants of malware
appearing each and every hour are capable of. Botnet software nowadays
is capable of automatically downloading updates from the internet to stay
ahead of anti-virus detection, so malware analysis would have to be done in
near real-time as well. However, with only detection by antivirus software,
it becomes almost impossible to fully understand the functionality of a given
malware before it spreads on the internet. Recent approaches to characterize
malware automatically such as [22] seem promising, but currently do not
scale sufficiently well and should still be considered open research problems.

To summarize, botnets constitute a major threat for the internet com-
munity and attack simultaneously from several directions:

• They disable or hamper internet infrastructure even during their nor-
mal operation,

• they enable or facilitate cybercrime such as phishing, pump-and-dump
spams, click-fraud, harvesting private user data for identity theft and
fraud, etc., and

• they reduce the chances of capturing spammers by obfuscating the point
of origin.

Objectives

The objectives of this paper can be summarized as follows. As the botnet
operators have resorted to extensive automation – in the generation of new
malware bot variants, in the deployment, command and control of these vari-
ants, and in diverse profit-gaining activities – it is necessary to automate the
detection, identification and tracking of botnets as far as technically feasible.
As the botnets operate on a global level beyond national boundaries, so we
also have to operate on a global level. As the botnet operators continually
update and extend their systems, so we also have to continually update and
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extend our identification systems. To be able to combat botnets proactively
and reduce their effectivness for any kind of usage – including spam – we
must first learn more about them.

We distinguish three levels at which botnet analysis may take place and
investigate various aspects and open issues on each of these levels. A central
focus is on how to replicate human expertise – in the identification of specific
bot types, specific bot net types and specific SMTP traffic patterns – by
appropriate machine learning systems, which enable natural update and ex-
tension of our systems by simple retraining. A widespread worldwide sensor
network using all three levels identified here should be able to achieve all our
objectives.

The final goal must be to characterize specific botnet commands to enable
the identification of the exact perpetrators regardless of all obfuscation tac-
tics, to facilitate and in some cases enable swift action by law enforcement,
and to develop proactive countermeasures. This remains the challenge for
the future, incorporating not only formidable technological but also major
legal issues.

2. Background and Related Work

Two types of approaches can be distinguished in the area of botnet de-
tection and botnet identification: active approaches and passive approaches.
Active approaches entail defanging bots or writing specialized bots to sim-
ulate the behavior of a real bot. Each way way enables the bot to log on
to a control center and watch the activity there, and usually enables direct
interference with the operation of the botnet.7 Passive approaches are those
that cannot be detected by any means, because there is no flow of informa-
tion back to the botnet operator. They work with more subtle information
sources than active approaches, and do not allow direct interference with the
operation of the botnet. Rather, the passive approach intends to be used as
a tool to study botnets and serve as an early warning system.

Active approaches comprise all kinds of techniques which make the botnet
operator directly or indirectly aware of observation. Examples for active
sensing include capturing bot malware and deactivating its malicious parts
(i.e. defanging bots), and subsequent analysis of the commands sent and

7This will likely lead to countermeasures. Silent bots of this kind are currently ignored,
but this may change in the future.
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received over the network during prolonged execution of the now harmless
bot. Defanging a bot is a complex task that at present can only be done
through a painstakingly manual process. While defanging need not be done
when bot communication is unencrypted, it is essential otherwise. Honeypots
and honeynets also use active methods to lure malware, e.g., by simulating
known vulnerabilities. While active approaches seem a tempting approach at
first sight, they have the big disadvantage that they can easily be detected.
Once this happens, botnet operators will inevitably adapt and circumvent
any measures taken against botnets. If focussed, aimed and applied in a short
time period, active approaches might be helpful for a once-in-a-lifetime shot
at botnet operators, but this is not likely given the diversity of approaches
currently followed without global supervision. The strong manual component
also make analyzing the majority of malware infeasible, and therefore this
approach is used only to track the most prevalent bots.

Passive approaches analyze traffic which the botnet generates and sec-
ondary effects of its usage (e.g. broken packets resulting from a distant DDoS
attack). An example of a completely passive approach is the use of darknets
in packet capture instead of using a machine which appears vulnerable (low
interaction honeypot), or actually is vulnerable (high interaction honeypot)
for attracting botnet attacks, malware, or spam. Both honeypot types can
be detected by botnet operators: the first one for example by testing the
functionality of the emulated service which is often very incomplete, and the
second one for example by fingerprinting the operating system after it has
been successfully compromised and then excluding known honeybot configu-
rations. The analysis of existing traffic, e.g., from Tier 1 network as in [14],
without introducing significant latency, also is a purely passive approach in
this sense. Purely passive methods are more complex to set up, test and
adapt, but have the big advantage that their detection is completely impos-
sible (for example, in the case of darknet data capture without SYN packet
reply, where the capturing machine is indistinguishable from an unused IP
address).

The approach investigated in this paper is based on passively observing
network traffic arriving in a darknet , i. e., an IP adress range which is not
used for any active machines. The term “darknet” is sometimes also used in
a different meaning, namely for a closed private network of computers, for
example, used for file sharing. In Level 3, we needed to augment this data
with received spam mails from our spam trap. While the analysis presented
there is thus not a passive system, the same data can be collected in a passive
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manner by analyzing SMTP traffic moving through a network.
Contrary to intrusion detection and prevention, which is concerned with

analyzing attacks and cutting attackers off before their attack has succeeded,
our approach is concerned with analyzing passively observed network traffic
to unused IP ranges. The quantity and quality of our traffic data is sig-
nificantly different from the one seen by intrusion detection and prevention
systems.

In fact, in preliminary experiments we found that standard intrusion de-
tection and prevention tools such as snort8, p0f9, fl0p10, honeysnap11, nmap12

and xprobe213 are not suitable for our traffic data as they are geared towards
active attack patterns which simply do not appear in our data.

Reference data was provided by Marshal Ltd. (http://www.marshal.
com) from their semi-automated TRACE system. We matched their IP and
timestamp data to ours, taking into account that dynamic IPs are a reliable
indicator of the underlying machine only for a short time period.

We will now present related research, grouped into active and passive
analysis approaches as outlined above.

2.1. Active Analysis

In [6], a model of botnet propagation using time zones is proposed. It is
based on the assumption that potential bots – being machines of private inter-
net users – will be switched off during the night. They used a DNS redirection
technique to redirect known IRC C&C14 servers to IP addresses under their
control. They note that over a six month period, they redirected 50 botnets.
Their diurnal model of botnet prediction works reasonably well at predicting
botnet population growth (better than basic Susceptible-Infectious-Removal

8Snort is an open-source tool and the de-facto standard for intrusion detection and
prevention. www.snort.org

9p0f is a passive operating system fingerprinting tool. http://lcamtuf.coredump.cx/
p0f.shtml

10fl0p is a passive L7 flow fingerprinting tool. http://freshmeat.net/projects/fl0p/
11honeysnap is a tool to analyze significant event in recorded packet files. https:

//projects.honeynet.org/honeysnap
12Network Mapper - an active scanner for vulnerabilities. http://nmap.org
13xprobe2 is an active operating system fingerprinting tool. http://xprobe.

sourceforge.net
14IRC bots use a central server to get their commands, which communicates via the

IRC protocol and is called Command & Control center.
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(SIR) models from epidemiology [8]) and may be used to prioritize botnets
by propagation potential. However, their type of data collection is a slow
manual process and very disruptive to botnet operation and therefore easy
to detect. Obviously, it would be possible to combine alternative data collec-
tion approaches (such the one discussed in this paper) with their approach.

Various graphs of botnet connectivity are analyzed in [7], and a taxon-
omy of botnets based on topological structure is proposed, with appropriate
targeted responses in each case. While their test case is trivial, their work
has some merit as a guideline to attack future botnets with more robust
communication architecture than a central C&C server (as in IRC).

2.2. Passive Analysis

[9] propose a framework to guess protocol types based on classical traffic
analysis, without reference to the content transferred. Such a system may
be able to recognize even encrypted botnet communication traffic for peer-
to-peer botnets by its characteristics.15 This would be similar to our Level 2
approach discussed in Section 4.2. A set of relatively simple features easily
computed from a traffic stream in real-time was able to distinguish normal
UDP traffic, Skype traffic, NetBIOS and Real-time Transfer protocol (RTP,
used for Voice-over-IP). Similar to their results, we also found that simple
features work reasonably well.

[4] propose a network quality measure based on spatial and temporal un-
cleanliness (i.e. the proportion of bots among all IP addresses measured along
time and space (subnet) axis) that tries to predict future botnet addresses
based on previously known botnet addresses. While interesting in principle,
the work is hampered by not taking into account dynamic IP adresses, which
influence both temporal and spatial uncleanliness and have not been properly
addressed.

[17] propose to use DNS blacklist queries to detect bots who are not yet
on the blacklist. Their detection is a purely passive approach, and even their
countermeasures are covert and may not be detected by botnet operators for
some time. It should be noted that in the meantime most DNS blacklists have
resorted to only return blacklist hits to query hosts with DNS MTA entries
(i.e. verified mailhosts). As such, DNS blacklist lookups can no longer be
used by most bots as they will always return NXDOMAIN. Queries may still

15Steganographic approaches would still remain undetected.
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be sent until botnet operators have adapted to this change. In any case,
we found that more than 97% of our bots are not on blacklists so explicit
lookups are perhaps no longer needed. The high prevalence of dynamic IPs
may also harm DNS blacklists’ effectiveness (see Section 5).

A more promising approach has been discussed in [14], who proposed us-
ing traffic summaries of data flow collected on a large Tier-1 ISP network. In
our terminology, their approach would also be classified as a Level 2 approach
(see Section 4.2). They propose an anomaly-based passive analysis algorithm,
which has been used to detect IRC botnet controllers with less than 2% false
positive rate. This still needs to be combined with a secondary more detailed
analysis to reduce false positive rates furtheras otherwise legitimate services
might be tagged as botnet controllers. However, very few institutions are
likely to get direct access to a Tier-1 network, which strongly hinders the
further development of this line of research. Non-centralized communication
between bots was not considered.

[1] report results from a multi-year project, Internet Motion Sensor in
darknet traffic analysis, for an almost passive distributed darknet16. They
demonstrate the usefulness of the darknet in tracking the spreading of the
Blaster Worm, the Bagle backdoor and the SCO denial of service attacks in
2003 and 2004. This darknet has been discontinued since then.

3. Synopsis

In this paper, we investigate a mostly passive botnet defense approach
which proceeds at three hierarchical levels. Based on network traffic data
observed in a darknet and on reference data, machine learning techniques
are applied for automatically detecting and identifying existing botnets.

For clarity, we will first describe the general framework within which we
have chosen to summarize our approach in general terms without too many
concrete examples. From Section 5, we will describe work we have done along
these lines on each of the three levels to be introduced.

16They sent out ACK packets in response to TCP connection attempts via SYN, which
could easily be detected but increases available traffic significantly.
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4. A Three-Level Approach

There are several meaningful levels at which the identification of botnets
can take place.

Level 1: At the level of a single packet , we can try to distinguish whether
its payload is malicious or spam, whether it corresponds to a remote
check for vulnerabilities, or whether it follows unusual conventions with
respect to flags and TCP options.

Level 2: At the level of network access, we can try to distinguish, for ex-
ample, the pattern of access to a given darknet (sequential or random
access, time between accesses to a single or multiple darknets, dis-
tribution of access per type and time etc.), pattern of communication
activity between bots (in case of peer-to-peer botnets) or with the com-
mand center (in case of centralized botnets) even without analyzing the
content. Traffic analysis in the usual military meaning is exactly this.

Level 3: At the level of TCP conversations , we can try to distinguish legit-
imate TCP conversations from illegitimate TCP conversations – e.g.,
SMTP connections sending spam and malware vs. those sending reg-
ular e-mail, SMB transactions known to trigger vulnerabilities in the
SMB protocol, etc. Contrary to the previous level 2, here we also ana-
lyze the content of many packets and entire conversations and are thus
limited to unencrypted or weakly encrypted communication channels.

While the activities at each of these levels will be different, it makes sense
to view these levels as incremental. For example, feature descriptors for single
packets which allow for identifying spambot types – as in our approach later
on – might be reused to compute summary statistics on the level of network
access over a large set of packets, and even on the third level of entire TCP
conversations. Patterns in network access can be reused to speedily prioritize
suspect TCP conversations, e.g., when one machine initiates connections to
the same destination port of many other machines. The reuse of patterns and
data from lower to higher levels makes a machine learning approach for all
levels feasible. Combined with feedback on known good and bad examples
on each level, a learning passive botnet detection and tracking system no
longer hampered by restrictions of human processing speed becomes a real
possibility.
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As mentioned before, the big advantage of our approach is that it will re-
main undetected by botnet operators. Honeynets, the analysis of malware in
sandboxes, and other active techniques (such as IRC detectors which play bot
and record botnet commands, and can even be used to take down botnets)
can potentially be detected, ignored and even subverted by botnet opera-
tors. Not only virtual sandboxes are vulnerable as no simulation is 100%
accurate – even physical sandboxes are vulnerable, as the necessary reuse of
operating system images allows to determine fingerprints for known sandbox
environments or the special-purpose hardware to replicate harddisc images
on startup, and to integrate these fingerprints into new bot versions. On
the other hand, such a functionality could also be used to immunize certain
operating system variants against the infection with bots. Additionally, the
active approach needs deep knowledge of bot malware which is not available
for most circulating variants.

4.1. Level 1: Analysis of Single Packets

The challenge in single packet analysis is to get the most information
out of a single packet sent out from a bot-infected machine. Combined with
darknets, which can be converted into silent detectors by traffic forwarding,
it is possible to construct completely passive detectors for bots.

Alternatively, instead of using a darknet, traffic moving through a net-
work could be analyzed on packet level with similar methods. Robust models
of botnet-specific packets may be built to detect any botnet activity within
the system, based not only on traffic concerned with propagation (e.g. pack-
ets with malicious payload), but also on communication between bots and
malicious bot activity addressed to machines within or without the network.
Nevertheless, the available data which can be obtained without any risk of
being detected by botnet operators is severely limited.

Open Issues

One major concern is that botnet operators could potentially randomize
packet payloads, and use open-source TCP stacks resp. the operating-system
TCP stack. This would limit the applicability of fingerprinting and restrict
the scope of our proposed passive darknet approach to UDP packets. It
would then be necessary to switch to more active approaches, e.g. sending
a SYN packet as response to a TCP SYN packet which asks for establishing
a connection packet. This strategy has been reported by [1] to increase
available data significantly, but also increases the chance of being detected.
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Clearly, receiving just a single SYN packet from every IP adress within a
large subnet, and never receiving anything else, makes this darknet approach
highly suspicious to appropriate darknet detectors. This may be the reason
why previous darknet approaches were not very successful.

Another option is to analyze packets in transit , i.e., when they are trav-
eling to other vulnerable machines, at firewalls or at the network routing
level. The same methods could be used, but far more care would be required
to distinguish good packets from bad packets. Whereas in darknets almost
every arriving packet can be assumed to come from a malicious source, this is
obviously not true here. In fact, changes in machine behavior as evinced by
sending unusual packets after receiving unusual packets may even be used to
automatically train such a system, but this is almost a Level 2 approach (see
Section 4.2). [14] proposed such an approach, but they only analyzed very
simple summary statistics of traffic data rather than doing a full analysis on
the packet level.

A single packet only offers limited information. Still, analysis on this
level works surprisingly well and should be more often implemented (see
Section 5). The lack of data on correlations between spambot types and the
corresponding packets sent out is an issue, though. Here, the availability
of automatically generated data (e.g. via sandboxes) from known spambot
types could create sufficient training data to test more complex approaches.

Another more long-term approach, especially in the view of the potential
vulnerability of sandboxes, would be a larger darknet for data collection, or
even analyzing a significant portion of packets in transit.

4.2. Level 2: Analysis of Network Traffic

The challenge in network traffic analysis is to correlate patterns of con-
nectivity (such as who sent a packet when and where) with botnet activity.
As an example, the obvious fact that all bots within a single botnet can be
expected to show the same behaviour in very short time frames can be used
to identify botnets quite reliably with minimal information about the actual
data sent out. In military applications, even with strong encryption that
is practically unbreakable, knowing who communicated with whom gives a
strong strategic advantage. Botnets need communication and central control
from a single source – the human operator, who needs to be at one defi-
nite physical location, but may obfuscate his position through a variety of
techniques.
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Bots are only efficient to use when they access many different machines.
Thus, a sufficiently large sensor network which records source and destination
IPs and ports of network traffic would be sufficient to detect probable bots
with high accuracy, although the a significant false positive rate would have
to be expected. As mentioned in Section 2.2, [14] presented just such an
approach, and reported a false positive rate of about 2%. This can clearly be
done as a purely passive analysis without any tip-off to the botnet operators
traced. A Level 1 model which tags packets corresponding to known spambot
types could be used to reduce computational load and latency interference.

Open Issues

A major problem is that most bots run from dynamic IP addresses, which
change at relatively short intervals. A longterm record of activity based on
IP addresses alone is thus useless for detecting longterm bot activity. Still,
the observation that the same activity pattern is shown by two different IP
addresses within a short period of time might help to tie the dynamic IP
addresses together and thus generate a long-term partial model of dynamic
IP address change for a certain subnet, thus making the identification of IP
addresses much easier. It should be noted that internet service providers can
of course trivially track the dynamic IP addresses of their own users.

At this level, data privacy issues are a major concern. The techniques
used to track dynamic IP addresses may, for example, be used to track spe-
cific machines and thus specific users over long time periods. Care must be
taken to handle this data in accordance with legal restrictions. This is a
major problem as there are no world-wide standards available. Again, for
a proactive analysis, indications from Level 1 that packets exchanged can
be traced to specific spambots may be helpful to convince law enforcement
agencies to actively support such techniques, and to follow up on their results.

The target population of botnet attacks is likely to be quite large, thus
getting a comprehensive overview is likely to be a major problem, and the
benefits are widely distributed. An alternative to a target-oriented analysis
of botnet attacks, especially in the light that identification of dynamic IP
addresses is trivial in this case, would be to analyze outgoing traffic from
internet service providers. This has not only the advantage that ISPs could
arrange the legal details with their own users in the context of appropriate
contracts, and thus keep their internal networks free of bots without legal
problems, but should also be considered in the context of the EU Data Re-
tention Directive 2006/24/EC [25, 23, 24]. The benefits of a botnet-free ISP
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service are clear and immediate.

4.3. Level 3: Analysis of TCP/IP Traffic

In addition to just analyzing traffic patterns without respect to contents
(which is already quite effective) it is also possible to analyze patterns in
content, treating, e.g., TCP streams and timing of responses as features for
a learning system. This provides a lot of data not available to simple traffic
analysis.

While it is theoretically feasible to build a fully passive traffic content
analysis system, the practical challenges are enormous. First, only very fast
learning systems are able to cope with very large traffic volumes without
slowing traffic down significantly, which is undesirable as it increases the
chance for detection. Downsampling the data may be helpful here, but may
reduce coverage. Second, tracking connections means a high memory load
only for keeping connection data until definitive connection closure, timeout
or a specific event which serves as checkpoint. This is feasible for small
networks, as TCP connection firewalls have proved, but cannot be done at
a scale similar to what would be feasible at Level 2. Selection mechanisms
might be needed to reduce the traffic which needs to go through such a
system.

Open Issues

Far more so than in Level 2, data is very sensitive here. This is because
content of TCP connections will include, among others, private e-mail data,
social security-, bankcard- and creditcard-numbers, and personal data from
literally billions of innocent people. An automated system which analyzes
just a small part of this data is a large operational risk if it can be subverted,
controlled or even just inspected by outside parties. While the technical
difficulties could be overcome, we believe that such a system cannot be run
outside government control with appropriate checks and balances. Although
it would prove the most effective weapon against botnet operators, the false
positive rate and potential for misuse is something to consider very deeply
in this case.

One possible use case might be in law enforcement, provided that a set
of potential botnet operators has been identified with simpler systems. Au-
tomatically tracking the list of potential suspects for a few days until one of
them can be linked to a known botnet operator might then be an acceptable
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use for such a system with manageable risks, provided data collected from
innocent people is discarded as soon as possible.

5. Experiments

In this section, we discuss concrete realizations of the abstract three level
approaches introduced before for a special type of botnets, for which most
reference data could be obtained: spam botnets, whose main activity is to
send out spam e-mail.

As proof-of-concept for Level 1 (single-packet analysis), we have built and
deployed a purely passive darknet packet analysis system which identifies
spambot type by header, contents and flags of a single incoming packet.
As not even SYN packets are returned by our darknet, TCP conversations
just yield one SYN packet, while ICMP and UDP packets yield a bit more
information. Surprisingly, even these relatively small packets yield enough
information to identify most spambot types quite reliably. We think this is
because botnet operators have not yet identified these obvious vulnerabilities
in their systems.

Our darknet currently contains 256 IP v4 adresses – equivalent to an
/24 subnet – which are distributed among four different /26 subnets. We
recorded all incoming packets since the start of the project and continue to
do so as long as possible.

We also recorded all traffic for one IPv6 /48 subnet. However, no non-
trivial traffic was obtained during the whole duration of the project.

As feature set we use protocol type (ICMP, TCP, UDP), TCP option
types and their order, ICMP and UDP payload data (represented as 2-gram
word vector (16 bit per token)), TCP and UDP destination port, and the
IP Don’t Fragment field. Because of the passive nature of our darknet, we
could not capture full SMTP conversations – only the connection attempt
was registered via TCP SYN packet. Spam mail contents were taken from a
separate small spamtrap built in a different project.

In preliminary experiments we found that standard intrusion detection
tools, such as snort, p0f, fl0p, honeysnap, ettercap, nmap and xprobe2 (cf.
Section 2), were unsuitable for our analysis – partially because their operation
mode is active (i.e., it involves sending packets which may be used to detect
our presence), and partially because their patterns only fit known attacks,
which the darknet effectively prevents (except for attacks purely via UDP)
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as no TCP conversations can be successfully set up. We therefore had to
build our own feature descriptors.

Simple single packet analysis already allows a test of effectiveness of cur-
rent DNS blacklist systems under reasonable assumptions. We assume that
each packet sent to the darknet has been sent from a bot-infected machine.
This slightly overcounts systematic port scanning activities by the adminis-
trators of our darknet, which however happen from a single IP, can be clearly
identified, and can therefore be neglected.

We found an overlap of only 2.75% with the Spamhaus XBL, which specif-
ically targets bot-infected machines, in online lookup (i.e., within one minute
of packet reception the IP is looked up). As typically dynamic IPs are reas-
signed on average once per hour, this is not very surprising. A faster approach
to identify bots is clearly needed.

5.1. Analysis of Single Packets: Identifying Spambot Type

Here, we describe just such an approach to identify bots based on a single
packet which is captured by our passive darknet detector. This is an example
of a Level 1 approach.

Reference data was provided by Marshal Ltd. (http://www.marshal.
com) from their automated TRACE system. We received monthly align-
ments of our IP data with the entries of their database, and matched them
via maximum time difference of plus/minus one hour, which is a reasonable
estimate of the time a dynamic IP remains the same on average, see Fig.
7(b) in [26]17. On average only about 5% of our IPs could be assigned to an
entry and thus spambot type from Marshall with these restrictions, yielding
about 2 000 packets which were highly likely to have been sent by a known
spambot.

Another issue was the opening of a connection from a single bot to dif-
ferent destination IPs, reusing the same source port. The source port is
therefore correlated with spambot type and must not be used. Reassigning
the right spambot type in this case is trivial based on rote learning the source
port - spambot mapping. So we only took one packet of each pair (source ip,
source port) to prevent a positive bias. This reduced our dataset further to
308 samples of eight spambot types.

As feature representation we have used the following set:

17The mentioned figure shows that 97% of IPs change once an hour or less often.
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Spambot Name (number) Precision Recall F-measure
Srizbi (3) 0.847 0.981 0.909
Rustock (7) 1.000 0.263 0.417
Pushdo (2) 0.000 0.000 0.000
Hacktool.Spammer (6) 0.500 0.313 0.385
Mega-D (1) 0.000 0.000 0.000
Unknown (4) 1.000 1.000 1.000
Unknown (9) 1.000 0.143 0.250
Unknown (11) 0.947 0.973 0.960

Table 1: Precision, recall and F-measure for spambot types as determined by Marshal

• flags to indicate ICMP, TCP or UDP traffic,

• whether or not the DF flag in the IP packet is set,

• the IP destination port (ICMP, one of (20,25,1433,5900,7557,16818,
23790,34357,35999,37370,37713,49110) or UNKNOWN), and

• a 2-byte gram word vector for TCP options (TCP packet), or the ICMP
payload (ICMP packet), or the UDP payload (UDP packet)

The set of IP destination ports was taken from training data. We have
chosen to use all information within each packet, only removing those in-
formation which cannot be meaningfully interpreted on a single packet level
(e.g. sequence numbers) or which would have tainted the test data (e.g.
source port).

Because of the small amount of data, we have evaluated our system by
leave-one-out crossvalidation. For simplicity, because of its robustness to
irrelevant attributes and in face of small training data, we have chosen a linear
Support Vector Machine for training, using just the default cost parameter
and no parameter optimization.18 Table 1 shows the results.

Detection turned out to be very good for the bot types Srizbi, Spambot 11,
and Spambot 4 with high precision and high recall; Rustock and Spambot 9
have high precision and low recall, so at least some of circulating variants can
be clearly identified, and the other types are performing rather badly. The

18www.cs.waikato.ac.nz/∼ml/weka, weka.classifiers.functions.SMO, default parame-
ters (-C 1)
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latter might be due to the fact that no clear patterns exist (e.g., randomized
payload, too many different variants, or too little training data to detect
patterns – note that for Hacktool.Spammer (6), Mega-D (1) and Pushdo (2)
we only have 16, 5 and 6 training examples, respectively, while Srizbi (3) has
215 examples. Unknown (4), (9) and (11) are distinct patterns observed by
Marshall researchers which are thought to belong to distinct spambots not
yet identified by antivirus researchers.

Nevertheless, we can detect bot activity and in some cases reliably assign
spambot types based on our model.

5.2. Static vs. Dynamic IP Addresses

Since most bots are hosted on dynamic IP addresses, a reliable assess-
ment of bot infection must be coupled to an incoming bot packet within a
short time period. To enable a long-term lookup for non-dynamic IPs, we
have also looked into recognizing static and dynamic IP addresses from re-
verse DNS entries. Additionally, this allows for a long-term study of botnet
activity for a small subset of the bots – those which are hosted on machines
with static IP addresses. This is another example of a very simple Level 1
approach, which uses just the source IP address from each packet and rDNS
lookup. Presumably, at the moment this cannot be detected easily by botnet
operators.19

For distinguishing dynamic and static IP addresses, we have created a
training set of known dynamic and known static IP addresses. For static IP
addresses, we have used all entries from www.dnswl.org referring to single
machines (/32) with high trust level (med and hi). For dynamic IP addresses,
we have used an overlap of incoming IP addresses with the PBL from www.

spamhaus.org, which has been initialized from the now obsolete dynalist
which was intended to capture dynamic IP adresses without reference to their
spamminess. While dynalist was explicitly a list of dynamic IP addresses, the
PBL also includes non-MTA IPs and may thus be considered slightly tainted.
However, a better resource for known dynamic IPs was not available (note
that [26] used the same resource). We thus obtained 8359 dynamic IPs with

19However, injecting IP addresses where the rDNS entry is only available on a DNS
server under the botnet operators’ control is not impossible and would allow detection of
the application of such a classification system. This is clearly a worst case scenario which
would also allow for non-user-detectable phishing, so we do not take it into account for
now.
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existing rDNS entry and 10387 static IPs with existing rDNS entry. 33.96%
of IPs did not have a rDNS entry and were discarded. An additional test
of spam-sending IPs by our local spamtrap found that 36.33% of the IPs
sending spam did not have a rDNS entry, which agrees well with our sample,
so bot IP addresses and spam-sending IP addresses show a similar fraction
of entries with existing rDNS entry – about two thirds.

We downsampled the list of static IP addresses to the same number of
entries as the list of dynamic IP addresses and created a set with equal class
distributions. We removed entries present in both sets (there were none) and
used only unique entries. We randomly selected half of this set to create a
same-sized training and a test set. Experiments were run as is, and also with
training and test set swapped, reporting the average error rate (similar to a
two-fold crossvalidation).

In a first experiment using word vectors with delimiter “.” (dot), where
word vectors were computed on the training set and applied unchanged to the
test set, an error rate of 2.91% with a standard deviation σ = 0.174% using a
multinomial version of Naive Bayes20 was achieved. In a second experiment
using n-gram characters, we tested n = 1, 2, . . . , 9. 4-grams achieved the
smallest error rate of 0.848% (with σ = 0.083%) using the same learning
algorithm. A linear SVM was competitive on the word vector data with
error rate 2.18% (σ = 0.16%), and on 4-grams with error rate 0.864% (σ =
0.136%). Thus, we obtained very good results in differentiating dynamic and
static IPs.

When applying this to our data, we found that approximately 4.38% of
the IP addresses from our darknet detector could be predicted as static IP
adresses, and thus could be tracked over longer time periods, giving a more
comprehensive view of botnet activity. However, the overlap of this IP set
with Marshal’s reference data was too small for further analysis.

Open Issues

While the current model performs very well, the fraction of clearly static
IP addresses within bots is rather small at only 4.38%. There are types of
dynamic IP addresses which change less often than once an hour – according
to [26] another 3% of IPs might be of this type. We could thus at least
double the amount of usable IPs for medium- to long-term tracking at the

20www.cs.waikato.ac.nz/∼ml/weka, weka.classifiers.bayes.NaiveBayesMultinomial
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cost of a more complex model which tries to predict the approximate length of
dynamic IP turnover, and do a more complex analysis with a mix of dynamic
IPs with different turnover distributions. This might be an interesting venue
for further research, provided sufficiently high-quality reference data can be
obtained.

5.3. Analysis of Network Traffic
Here, we describe an example of a Level 2 approach. We have analyzed

the access pattern of bots to our darknet within a six month period. For
simplicity we have focussed only on the order of accesses within a short time
span, chosen to minimize the risk of source IP change.

More specifically, we have extracted all accesses to our darknet from any
source IP from the first occurrence until one hour later. After this time, a
cooling-off period of six hours was chosen to prevent new accesses from the
same IP in the next window. Beyond the cooling-off period, the same IP
was again admitted as start for a new access sequence. The period of one
hour was chosen to minimize the risk that the (probably) dynamic source
IP changes, and another machine would seamlessly take over the old source
IP, mixing access patterns from two distinct machines. While this means
that we lose some data for IP addresses which do not change as often as we
assume in the worst case, we felt that such a precaution was necessary to get
sufficiently clean data.

The access pattern sequences are astonishingly varied. On the whole six
months data we received 25 588 access sequences with a length of at least
three accesses on at least three unique target IP addresses. 98.14% of these
access patterns were unique. There were 15 627 unique source IP addresses,
so 38.93% of the access patterns came from IPs which appeared more than
once. None of them appeared in consecutive time windows, so the window
of six hours was sufficient to isolate the accesses from one source IP address.
The average length of an access pattern was 67.95 ± 107.53 accesses, the
average number of unique target accesses was 47.44 ± 69.09. Systematic port
scanning activites are quite common – the ten most common start sequences
are accesses to consecutive IP adresses within one subnet.

A sensible choice to determine distance between access pattern sequences
is the edit distance, where the character set contains all our target IP ad-
dresses. We chose to use the Levenshtein distance [15]21, and visualized a

21This edit distance determines the cost of insertions, deletions and substitutions as a
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random sample of 288 accesses (about 1% of the total number of accesses)
via Sammon mapping [19, 2].22 Figure 1 shows the results. A cluster which
contains a significant portion of access pattern sequences is clearly visible
near (0,0) on the right side. The observed spreading-out pattern reflects
most likely different access lengths, since a higher length will incur a higher
edit distance.

Figure 1: Sammon mapping of 288 access patterns

For a more detailed analysis, we reused the reference data by Marshal
and aimed to assign a definitive spambot type to each access pattern se-
quence. Again, the small overlap resulted in only 82 matches by source IP
and timestamp (access within plus/minus one hour of the reference) with 45
unique access pattern sequences. However, 13 of those had ambiguous spam-

uniform cost of 1.
22Sammon mapping is a non-linear multi-dimensional scaling technique which directly

minimizes stress and tries to keep the same distance matrix between examples as far as
possible, thus aiming for a distance-preserving visualization.
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bot type (i.e., more than one type for the same access pattern) and had to
be discarded, leaving us with 32 usable sequences. As we will see later, the
unambiguous mapping of this information to spambot type may not be the
most appropriate use of the access patterns. When using a Sammon mapping
as in Figure 1, the majority of sequences were clustered within a small area
and significantly overlapped (data not shown), so we have chosen a different
visualization technique for clarity.

Figure 2 shows a distance matrix of all 32 sequences, where dark refers
to small edit distance (i.e. similar access sequences) and white refers to high
edit distance (i.e. dissimilar access sequences). For clarity, we have used
logarithmic scale followed by histogram normalization. The columns and
rows are sorted by edit distance values from small to high which facilitates
the search for clusters. Columns and rows correspond to the access patterns
and the diagonal corresponds to the distance of each pattern to itself, i.e.
zero. The order of access patterns for rows and columns is the same. A
cluster is therefore a submatrix containing one specific set of columns and
the same set of rows, which is uniformly dark (e.g. rows 2,5 and 6 and
columns 2,5 and 6 give a 3x3 submatrix which seems to be a cluster). Top
left is column 1, row 1.

Figure 2: Complete edit distance matrix of 32 access pattern sequences with known spam-
bot type (white = high distance, black = low distance)

By visual inspection we can discern three clusters in Figure 2: (A) second,
fifth and sixth column/row; (B) first, eighth, and tenth column/row; (C)
13th, 16th, and 17th column/row. If the corresponding columns and rows
from a cluster are selected, the resulting submatrix is almost completely
dark (i.e. similar) relative to the background. Again, one effect of the edit
distance’s dependency on sequence length is that the longer sequences are to
the right bottom corner of the figure and that the edit distance tends to get
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higher in that direction.
A detailed analysis shows that cluster (A) contains three different se-

quences with a length of one which therefore all have an edit distance of one
between them. This is of course rather uninteresting. However, (B) shows a
variable number of accesses to a specific target IP – twice for spambot Srizbi,
once for spambot Rustock. (C) also shows a variable number of accesses to a
different specific target IP – twice for Srizbi, twice for Rustock. Two weaker
clusters can also be discerned. (D=9,15,22) shows again a variable number of
accesses to a different specific target IP, all for Srizbi. In one case, a small set
of other IPs were also accessed. (E=12,18) shows again a variable number of
accesses to a different specific target IP, once for Pushdo and once for Srizbi.

Immediately, we began to wonder why different spambots show extremely
similar access patterns. Could this point towards a common control mecha-
nism, e.g., a botnet consisting of multiple spambot types which were all asked
to check out the same target IPs ? It is highly unlikely that almost half of our
sequences should be so similar if the process of choosing IP adresses to scan
would be either random, or depend on spambot type. Neither hypothesis is
supported by our data at present. However, we must leave a more detailed
analysis for future work due to lack of data.

The six most dissimilar sequences (bottom-right of figure) cannot be fixed
to a specific spambot type, either. These access sequences are long, seem to
be random, and scan a significant portion of our address space (84.84% ±

18.17% on average, with 1.9 ± 0.10 accesses per target IP). These seem to
be spambots set to a scanning mode, while the previous clusters may be
reconnaissance probes intended to search for vulnerable subnets before an
exhaustive scanning takes place. Note also that the access pattern sequence
here is significantly longer than for an average pattern from the whole dataset.

All in all, the access pattern sequences may not tell us too much about the
specific spambot type, but rather about the mode in which a botnet operates,
and show tentative connections between source IPs and spambot types which
may hint at a common operator, membership of the same botnet, or other
factors which are not yet well understood.

5.4. Analysis of TCP/IP Traffic

Here, we describe an example of a Level 3 approach. As our darknet does
not allow TCP/IP connection set-up, no continuous TCP/IP traffic could be
recorded. Therefore, we aligned data from a local spamtrap addresses with
Marshal’s spambot data in a similar way as described earlier. This allowed
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us to map a subset of SMTP conversations to a specific spambot type. We
have visualized spam mail content versus spam bot type, and found some
interesting patterns which may indicate that different spambots are used for
sending out different kinds of spam.

This specific experiment does not result in a completely passive system,
as the receipt of SMTP mail needs a TCP conversation which has to be simu-
lated by our spamtrap, and would thus be amenable for detection attempts.
However, by analyzing SMTP traffic moving through a network the same
analysis could be done in a completely passive way as well. This could be
done e.g. with an external firewall. Strictly speaking, the analysis of TCP/IP
traffic is obviously not possible with a purely passive darknet.

By analyzing about 200 000 spam mails from our spam trap, we found
that most spam data is indeed sent out in a single packet. However, not all
packets sent to port #25 are spam content. In fact, we found e.g. DATA
commands on top of the spam mail and QUIT afterwards, multiple spam
mails in a single packet with appropriate SMTP commands between them
and so on. Only an analysis of the whole TCP conversation gives enough
information to distinguish the content of the mail which was sent from status
and informational data transferred.23

Reference data was again provided by Marshal from their automated
TRACE system. We restricted the data and obtained two selective align-
ments, each for a period of 24 hours. Again, we matched them via maximum
time difference of one hour. We obtained 192 pairs with (received spam
mail, spambot type). Because of earlier experiments reported in [20] we
chose a 6-character-gram representation for each mail instead of the more
widely used word vector representation. This yielded 7008 unique 6-gram
tokens. For visualization we again chose Sammon mapping. We reduced the
7008-dimensional binary vector to two dimensions, and applied the known
spambot types for tagging afterwards.

Figure 3 shows the results. As you can see, Rustock (7) and Srizbi (3)
are responsible for the majority of incoming spam. The clusters of spam
mail content are clearly distinguishable. Note that one spambot type which
could not be assigned to any darknet IP (i.e. no reference data for this

23In fact, we found a few messages containing malware executables where TCP fragments
were used to distribute the content of the message into multiple packets, presumably to
confuse packet-level firewall virus scanners.
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"Mega-D (1)"
"Srizbi (3)"

"Rustock (7)"
"Grum (8)"
"Unknown"

Figure 3: Sammon mapping of 192 spam mails based on content with attached spambot
types.
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spambot type could to matched to any of our darknet packets – this means
that no verified activity of this spambot was observed by our darknet) was
nevertheless found sending out spam, namely Grum (8). A few less active
spambots can also be discerned.

Although spambots can potentially be used to send out any kind of spam,
there seem to be clear patterns in the actual spam sent out. These might
reflect usage patterns of spammers (such as preferring simpler spambots to
send out cheaper spam), technical constraints (e.g., specific interfaces be-
tween some text generators for spam and some spambots, which facilitate
combined usage) or some other factors, and thus could give valuable infor-
mation about the source of the spam, as well as of the unterlying botnets
and their operators.

6. Outlook

Given our prototype system, and reasonable assumptions about the num-
ber of bots, it is possible to roughly compute the necessary size of our darknet
to catch each bot at least once per day.

We have taken the estimate by ShadowServer24 of around 600 000 bots,
multiplied it by three and rounded up to 2 000 000 bots. Our present system
sees 350 unique IPs each day from analyzing 30 000 packets, so we need on
the order of 1,5 million unused IP addresses to see each bot on average once
per day, and need to analyze 170 million packets per day (2 000 packets per
second). This might be difficult to obtain because of IPv4 shortage, but we
remain optimistic that a sufficient number of unused IPs will be donated via
IP-over-UDP forwards.25

Concerning processing speed, our current system is reasonably efficient:
5 000 packets could be analyzed each second, so theoretically a single server
would be sufficient to analyze this data at level 1. The technical limit for
packet capture seems to be around 170 000 packets per second, but this does
not include analysis and storage of this data is only feasible for short time
periods.

Higher level analysis will need more computational power, but will also
enable more complex detection and identification of botnets. The present
system is not yet able to identify whole botnets. Although the spambot type

24www.shadowserver.org
25Please contact the authors if you are interested.
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is one weak indicator of botnet membership, a reconstruction of botnets is
not feasible with only this information. Reference data on known botnets
would be very helpful for creating such a system.

Some of the patterns we mentioned could be removed quite easily. Even
a complete passive analysis does not prevent the awareness of such patterns
by papers such as this, and countermeasures are usually available. However,
all such tasks will make the botherders’ job harder and more complex, thus
increasing costs and making botnets less attractive. Also, through our focus
on machine learning approaches, regular validation with data obtained from
other systems enables us to update our systems and note when some features
are no longer working.

While technically feasible, there is a legal problem to automatically de-
activate bots. Also, for obsolete operating systems which can no longer be
made safe, removing one bot will yield another infection quite soon. We
therefore believe that ISPs are best placed to solve this problem for their
own customers. Forcing ISPs to keep their nets bot-free, e.g. by disconnect-
ing known longtime offenders from the internet, would be a way to speed up
this process.

7. Conclusions

We have presented a framework for passive tracking and identification of
botnets based on analysis on three distinct but related levels:

• Level 1: Single Packet Analysis

• Level 2: Network Traffic Analysis

• Level 3: TCP/IP Traffic Content Analysis

We have also presented working systems at each of the levels which are,
or can in case of Level 3 be made so with minimal adaptation, purely passive
and thus cannot be detected by botnet operators directly.

We are interested in further development of our system towards more
comprehensive tracking of bots, and seek collaboration with providers of
reference data on botnet activity, owners of unused IPv4 addresses, law en-
forcement and other groups who take an active interest in addressing the
botnet problem.
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