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� Abstract
Automated microscopic image analysis of immunofluorescence-stained targets on tis-
sue sections is challenged by autofluorescent elements such as erythrocytes, which
might interfere with target segmentation and quantification. Therefore, we developed
an automated system (Automated REcognition of Tissue-associated Erythrocytes;
ARETE) for in silico exclusion of erythrocytes. To detect erythrocytes in transmission
images, a cascade of boosted decision trees of Haar-like features was trained on 8,640/
4,000 areas (15 3 15 pixels) with/without erythrocytes from images of placental sec-
tions (4 mm). Ground truth data were generated on 28 transmission images. At least
two human experts labelled the area covered by erythrocytes. For validation, output
masks of human experts and ARETE were compared pixel-wise against a mask obtained
from majority voting of human experts. F1 score, specificity, and Cohen’s j coefficients
were calculated. To study the influence of erythrocyte-derived autofluorescence, we
investigated the expression levels of a protein (receptor for advanced glycated end pro-
ducts; RAGE) in placenta and number of Ki-67-positive/cytokeratin 8-positive epithe-
lial cells in colon sections. ARETE exhibited high sensitivity (99.87%) and specificity
(99.81%) on a training-subset and processed transmission images (1,392 3 1,024 pix-
els) within 4 sec. ARETE and human expert’s F1-scores were 0.55 versus 0.76, specifici-
ties 0.85 versus 0.92 and Cohen’s j coefficients 0.41 versus 0.68. A ranking of Cohen’s j
coefficient by the scale of Fleiss certified ‘‘good agreement’’ between ARETE and the
human experts. Applying ARETE, we demonstrated 4–14% false-positive RAGE-expres-
sion in placenta, and 18% falsely detected proliferative epithelial cells in colon, caused
by erythrocyte-autofluorescence. ARETE is a fast system for in silico reduction of
erythrocytes, which improves automated image analysis in research and diagnostic
pathology. ' 2013 International Society for Advancement of Cytometry
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TISSUE cytometry refers to automated analysis of digitized microscopic images of

stained tissue sections. Following segmentation of the tissue by computer algorithms,

qualitative and quantitative analyses of multiple molecules and parameters can be com-

puted on a single cell basis in the tissue context. Tissue cytometry takes into account

the strong influence of intact cell-cell and cell-matrix interaction on cellular behavior.

In addition, the analysis of large tissue areas enables quantification with statistical sig-

nificance. Consequently, tissue cytometry is an essential tool not only for research, but

also for diagnostic, therapeutic, and predictive medicine (1). Accordingly, a growing

number of open-source packages such as Cell Profiler/Broad Institute (2,3) and com-

mercial tools (e.g., TissueQuest by TissueGnostics GmbH, Vienna, Austria; Aqua by

HistoRX; InCell by GE Healthcare) are available for automated image analysis of tissue

samples (4).
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In tissue cytometry, detection and measurement of target

proteins is based on immunohistochemistry (IHC), which

combines antigen-specific primary antibodies and secondary

antibodies conjugated to reporter-molecules, and produce a

colored precipitate from a chromogenic substrate. Alterna-

tively, in the fluorescence microscopic analysis, antibodies are

conjugated to a fluorophor emitting a fluorescence signal. For

several reasons, the latter technique is often of advantage in

research and diagnostics (5,6). A higher resolution is possible

with fluorophore-conjugated antibodies compared to chromo-

genic substrate precipitates. Multi-antigen imaging enables

parallel detection and spatial correlation of several cellular tar-

gets. Thereby, the number of targets is mainly limited by avail-

ability of fluorophores with nonoverlapping absorption and

emission characteristics. In addition, a major advantage is the

wide linear dynamic range of fluorophores, which better sup-

ports the computed quantitative measurement of parameters

in biological specimens than chromogen-based signal-detec-

tion that suffers from a more rapid saturation (7,8). This lin-

ear quantification of many parameters enabled by automated

image analysis is an important improvement to the widely

applied qualitative human scoring methods regarding the pre-

cision and validity of the results. Human evaluation usually

combines the staining intensity of labeled proteins in immu-

nofluorescence microscopic images with the number of

stained cells to a nonlinear scoring (9). Human scoring

remains semiquantitative and additionally suffers from intra-

and interobserver variability (10).

Though there are many advantages, fluorescence micros-

copy and consequently tissue cytometry is troubled by the

phenomenon of autofluorescence. This is caused by either

intrinsic fluorescence of cell and tissue components, or

induced during fixation or processing of the tissue (11).

Intrinsic autofluorescence can originate from porphyrin deri-

vatives such as protoporphyrin IX, a precursor of the heme

molecule, which is a major component of erythrocytes. Ery-

throcytes are present in major blood vessels and microvessels

as well as in all histological and pathological tissue samples,

but their number per area varies greatly. Erythrocyte-asso-

ciated autofluorescence can significantly exceed the back-

ground fluorescence of the tissue and can interfere with the

fluorescence emission of specific targets. Erythrocyte-auto-

fluorescence may be mistaken for a specific fluorescent signal

or hide a weak specific signal from the target of interest, and

this can influence, for example, nucleus detection, image seg-

mentation, as well as falsify the quantification of the target

proteins.

On the contrary, autofluorescence of erythrocytes can

also be applied to diagnose and monitor pathological states of

erythrocytes. Their fluorescence can be evoked by glycation of

proteins, which is the formation of and conjugation with

advanced glycated end products (AGEs) (12,13). Enhanced

glycation of many molecules is associated with elevated sugar

levels (such as glucose) or oxidative stress, and is consequently

associated with a variety of pathologic states such as diabetes

mellitus (14), neurodegenerated diseases (15), or preeclampsia

(16,17).

Autofluorescence induced by fixation can be omitted

through changes in the procedures. Moreover, various histo-

chemical techniques for the removal of intrinsic and extrinsic

autofluorescence have evolved. However, reduction of tissue

autofluorescence has proven very difficult and can destroy

major antigens in the tissues. Among the different methodolo-

gies used are treatment with ammonia/ethanol or sodium bor-

ohydride or quenching of autofluorescence with dyes such as

Sudan Black B, Trypan Blue, and others. Photobleaching

changes the molecular structure of a fluorophore so that it

loses its ability to fluorescence (18–21).

Unfortunately, no general recipe is available for the con-

trol of autofluorescence. Certain chemical treatments may

even induce erythrocyte-associated autofluorescence (18).

Quite often, the autofluorescence of tissues is not eliminated

or sufficiently reduced with a single autofluorescence reduc-

tion methodology, and therefore combinations of techniques

need to be tested in a time-consuming procedure to obtain

optimized results for target tissues. Whether the specific pre-

treatment influences the subsequent target staining has to be

determined in a subsequent testing (22). In summary, the

elimination of unevenly distributed autofluorescence as asso-

ciated with erythrocytes cannot be performed with a single

standard protocol, requires time for the set up of the best pro-

tocol per given tissue and fixation protocol, and adds an addi-

tional pretreatment step to the protocol required for immuno-

fluorescence staining. In case multiple antigens are labeled in

the same preparation and detected at individual wavelength,

the procedure for elimination of autofluorescence has to be

performed for any protein and at any individual fluorescence

channel needed.

In the context of tissue cytometry, a possibility to circum-

vent such complicated and time-consuming establishment of

protocols to reduce interfering autofluorescence derived from

erythrocytes would be the automated detection and exclusion

of these cells. Although algorithms for the recognition and

classification of erythrocytes in blood (23,24) have been pub-

lished, the automated detection of tissue-associated erythro-

cytes has never been described before. Therefore, we developed

ARETE (Automated REcognition of Tissue-associated Ery-

throcytes), a computer system, which represents a cascade of

boosted decision trees and identifies tissue-associated erythro-

cytes in digitalized images utilizing their distinctive shape and

structure. We developed the system using 8,640 small image

areas containing tissue-associated erythrocytes and 4,000 neg-

ative samples excised from images of human placental chori-

onic tissue. Evaluation of ARETE was performed by two

means. First, on a subset of the training data (n 5 3,000),

where ARETE demonstrated high sensitivity (99.87%) and

specificity (99.81%). Second, we compared the segmentation

results returned by ARETE with the merged results from man-

ual segmentation of several human experts on 28 randomly

selected transmission images from healthy and preeclamptic

placental tissues. Manual segmentation by humans is usually

regarded as being the gold standard for validation purposes,

although it is affected by intra- and interexpert variability. In

the pixel-based comparison, F1 score and specificity of ARETE
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and single experts were compared to the merged experts’

values. A ranking of Cohen’s j coefficient (0.41 vs 0.68) (25)

by the scale of Fleiss (26) indicated good agreement between

ARETE and the human experts.

Finally, we give two examples of how the erythrocyte-

associated autofluorescence can influence the results of auto-

mated image analysis in research and eventually in digital pa-

thology.

In placenta, we quantified the expression of the Receptor

for Advanced Glycated End products (RAGE). Because soluble

AGE-modified molecules can activate the receptor for AGEs

on various cell types, thereby promoting chronic inflamma-

tory states, RAGE is a putative target of anti-inflammatory

treatment. Therefore, the levels of RAGE expression in healthy

and diseased tissues of various origins including placenta are

of interest (27). As expected, the automated analysis of RAGE

expression using immunofluorescence microscopy was

impaired by autofluorescence of erythrocytes.

In colon cancer tissue, the proliferation rate of cancer

cells influences the onset of metastasis, disease-free and overall

survival. The metastatic potential of the tumor may be evalu-

ated by assessing the expression of the proliferation marker

Ki-67 in cytokeratin 8-positive epithelial cancer cells. We

exemplify the falsification of the number of Ki-67-positive

cells by erythrocyte-associated autofluorescence.

Overall, ARETE offers several advantages compared with

a chemical control of autofluorescence. ARETE generates the

‘‘erythrocyte mask’’ within 4 seconds from the transmission

image. Chemical protocols usually require several hours for

execution and even longer for their establishment. Executed

on transmission images, an interference of the erythrocyte-

detection with the specific staining in any of the fluorescence

channels does not exist. Acquisition time for transmission

images is short (1 msec) and therefore does not lead to bleach-

ing of fluorescence and subsequent reduction of quantified

pixel-intensity. As it operates on transmission images, the ded-

ication of any fluorescent channel for the detection of erythro-

cytes via specific antigens is also unnecessary.

MATERIALS AND METHODS

Immunofluorescence Staining

Tissue sections from human placenta and colon have

been used in this study. Samples were derived from collabora-

tions with the Department of Pathology at the Medical Uni-

versity Vienna, Austria, and all studies were approved by the

ethic commission of the Medical University Vienna. If not

stated otherwise, all chemicals were obtained from Sigma-

Aldrich (St. Louis, MO). The formalin-fixed paraffin-embed-

ded tissues were sectioned (4 mm) and mounted on Micro-

scope slides (Menzel GmbH, Braunschweig, Germany).

Human placenta. For automated analysis of expression levels

of placental proteins in healthy and diseased human placental

chorionic tissue, we have recently published a system for auto-

mated detection of total placental chorionic tissue area and

additional segmentation of the multinucleated syncytiotropho-

blast area, which is the surface cell layer of the villi interacting

with maternal blood (28). The segmentation algorithm is based

on the detection of cytokeratin 7, a specific cytoskeletal compo-

nent of the syncytiotrophoblast, using immunofluorescence mi-

croscopy. After segmentation, staining intensities of proteins of

interest per total chorionic tissue area, syncytiotrophoblast area,

or total tissue area minus syncytiotrophoblast area (i.e., stromal

tissue area) can be computed. Molecules of interest may be pro-

teins such as the receptor for advanced glycation endproducts

(RAGE) suspected to be involved in the development of a preg-

nancy-specific disease [preeclampsia; (29)] or molecules such as

gamma smooth muscle actin (gsm-actin), which help to further

classify the tissue structures (30).

Labeling of proteins was performed on placental tissue

sections from healthy as well as preeclamptic placentas by

indirect immunohistochemistry using specific primary and

fluorophore (Alexa Fluor-488, Alexa Fluor-568, and Alexa

Fluor-647)-conjugated secondary antibodies. After deparaffi-

nizing and rehydrating, antigen retrieval was done by boiling

samples for 15 min in 0.01 M citrate buffer, pH 6.0. Following

permeabilization and blocking with 5% (w/v) goat serum

(Dianova GmbH/Jackson ImmunoResearch) plus 0.05% sapo-

nin in phosphate-buffered saline (PBS; placenta blocking

buffer), sections were incubated consecutively with the follow-

ing antibodies diluted in placenta blocking buffer for 1 h at

room temperature with intense washing steps in between: rab-

bit anti-human RAGE (N-300, Santa Cruz Biotechnology,

Santa Cruz, CA) diluted 1:50, Alexa Fluor 568 goat anti-rabbit

(Invitrogen Molecular Probes/Life-Technologies, Paiseley, UK)

diluted 1:1,000, mouse anti-human cytokeratin 7 (clone OV-

TL 12/30, DaKo, Denmark) diluted 1:100, Alexa Fluor 647

goat anti-mouse (Invitrogen Molecular Probes/Life-Technolo-

gies, Paiseley, UK) diluted 1:1,000, mouse anti-actin (MAb

Clone B4, MP Biomedicals, Aurora, OH) diluted 1:250 and

Alexa Fluor 647 goat anti-mouse (Invitrogen Molecular

Probes/Life-Technologies) diluted 1:1,000.

Human colon. Antigen retrieval in colon tissue sections was

performed by boiling samples for 20 min in 0.05% (w/v) citra-

conic anhydride. Following permeabilization in PBS/Tween

0.2% (w/v) and blocking with 5% (w/v) goat serum (distribu-

tor Dianova GmbH, Hamburg, Germany; formerly Jackson

ImmunoResearch, West Grove, PA, USA) plus 0.05% Tween in

PBS (colon blocking buffer), sections were incubated in paral-

lel with mouse anti-human Ki-67 (clone MIB-1, DaKo, Den-

mark) diluted 1:50 in colon blocking buffer and rabbit anti-

human keratin 8 (clone EP1628Y, Thermo Fisher Scientific,

Fremont, CA) diluted 1:200 in colon blocking buffer for 1 h at

room temperature. After washing, sections were incubated in

parallel with Alexa Fluor 647 goat anti-mouse (Invitrogen Mo-

lecular Probes/Life-Technologies) diluted 1:1,000 in blocking

buffer and DyLight 549 goat anti-rabbit (Vector Laboratories,

Burlingam, CA) diluted 1:100 in blocking buffer for 1 h at

room temperature.

In all samples, 40,6-diamidino-2-phenylindole (DAPI;

Roche Diagnostics GmbH, Vienna, Austria) was applied at 0.2

mg/ml PBS for 10 min at room temperature to visualize cell
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nuclei. Control stainings were performed omitting the primary

antibodies. After washing, slides were mounted with Fluoro-

mount G (SouthernBiotech; Burmingham, AL).

Image acquisition

Tissue sections were acquired using a TissueFAXSplus tis-

sue cytometer (TissueGnostics GmbH) equipped with epifluo-

rescence optics and a Plan NeoFluar objective (203/NA 0.5;

Zeiss, Oberkochen, Germany). The following filter sets

(Chroma 49000 series filter sets) were used: DAPI (350-nm ex-

citation, 400-nm dichroic, 460-nm emission), FITC/Cy2 (470-

nm excitation, 495-nm dichroic, 525-nm emission), mCherry/

TxRed (560-nm excitation, 585-nm dichroic, 630-nm emis-

sion), and Cy5 (620-nm excitation, 660-nm dichroic, 700-nm

emission). The monochrome camera of the TissueFAXSplus

instrument was used to acquire grayscale images of all sam-

ples. To ensure correct focus, we took all images were automa-

tically on five different z-levels with a 2 mm interval. The

z-stacks were merged into one critically sharp image using

extended focus, an integrated feature of the software. Fluores-

cence and corresponding transmission images were acquired

and stored with lossless compression in PNG format. Auto-

mated identification and segmentation of placental chorionic

villi into the syncytiotrophoblast and the stromal core was

performed via cytokeratin 7-positive trophoblast cells as pub-

lished (28). Cell segmentation of colon sections in order to

identify single cells positive for Ki-67 staining was done by

TissueQuest software version 4.0 based on nuclei detection

(TissueGnostics GmbH).

Generation of ground truth data

The ground truth dataset was obtained by randomly

selecting 28 independent transmission images (fields of view)

from healthy and preeclamptic placental tissue sections. Part of

such an image is shown in Figure 3a, demonstrating the distinc-

tive shape of erythrocytes. At least two trained personnel

(human experts) inspected these fields of view and manually

marked up the area covered by erythrocytes in the transmission

images using a Wacom Graphics Tablet (WACOM Europe

GmbH, Germany) and the image-processing program Adobe

Photoshop CS 4.0 (Adobe Systems Inc., USA). An example for

a manual markup of one expert is given in Figure 3b. The

instruction given was to ‘‘cover the erythrocyte-area in the

image.’’ On a limited set of images (n 5 8), the instruction was

‘‘label every single erythrocyte with a dot of 8 pixel radius.’’

Preparing the training set

ARETE is a machine-learning-based solution that was

trained on 8,640 samples containing erythrocytes (e.g., see Fig.

2c) and 4,000 samples of nonerythrocyte areas extracted from

transmission images of human placental and colon tissue sec-

tions. To speed up the cut out process of true positives (TP) as

well as true negatives (TN) from images, the small tool ARETE-

CUTwas implemented. Erythrocytes (5TP) were semiautoma-

tically cut out just by clicking on them (assuming a fixed size of

15 3 15 pixels). Additionally, it was used to select tissue areas

(various sizes) that did not contain erythrocytes (5TN).

Training of ARETE

The algorithm ARETE is a cascade of boosted decision

trees (31). The training process builds a cascade that consists

of a set of weak classifier augmented by an adaptive boosting

technique [AdaBoost; (32)] where each subsequent classifier

trains on a reweighted training set. The cascade of weak classi-

fiers ensures fast execution—the classifier must be run on ev-

ery possible window of the image at multiple resolutions—

whereas the boosting step ensures sufficiently good perform-

ance of the ensemble of weak classifiers at each cascade level.

The extended set of Haar-like features (exemplified in

Fig. 2c) described by (33) was employed. Haar-like features

enable the fast extraction of several hundreds of thousand fea-

tures from small rectangular areas by computing the difference

between the sums of the pixels within two or three aligned ad-

jacent rectangular regions.

Application of ARETE on tissue sections

In the detection phase, the previously trained cascade was

employed on transmission images of tissue samples. Rectangles

were moved at different scales over the input image of a given

tissue section acquired using microscopy (Figs. 2a and 2b) and

each window was processed by the cascade of boosted trees

(Fig. 2c). If a window was classified to contain an erythrocyte, a

circle with a radius of eight pixels was inscribed. Locations were

clustered and combined with nonmaximum suppression and

neighbor-filtering. Additionally, images were rotated four times

by 908 and analyzed in parallel, yielding four independent esti-

mates for each image that were combined using logical OR.

This procedure increased the accuracy of the detection by about

20%, because uneven illumination can introduce a gray-scale

gradient that is also learned by the model. This gradient may

differ on other instrument setups; however, this step ensures a

stable detection even for other gradients. In this way, an output

mask (Fig. 2d) was created, where each erythrocyte was indi-

cated as a set of pixels with an intensity value greater than 0.

This mask contained information such as the location and the

area covered by the erythrocytes and enabled the exclusion of

these tissue areas from further analysis in corresponding images

acquired in fluorescence channels (Figs. 2e and 2f). As an alter-

native application, a specific analysis of the erythrocyte features

can be considered such as erythrocyte-covered area, autofluor-

escence intensity-level, and so on.

Validation of ARETE

First, sensitivity and recall/specificity of the performance of

ARETE on a subset (n5 3,000) of the training set was computed

(see Table 1). High sensitivity and specificity were obtained.

Afterward, human expert masks of 28 transmission

images of placental tissue sections were compared against each

other using majority voting (MV) for each FOV. Pixels lying

within all individual human expert markups were defined as

TP, pixels obtained from less experts were either false positives

(FPs) or false negatives depending on the majority vote at that

pixel. We computed specificity, as well as the balanced F1 score

(based on the effectiveness measure E from reference 34),

which is a weighted average of precision and recall/sensitivity
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for the area-wise agreement between individual human

experts and Cohen’s j coefficient (25) to assess inter-rater

agreement. These statistical measures are defined as follows:

specificity ¼ tn

tnþ tp
;

precision ¼ tp

tpþ fp
;

recall=sensitivity ¼ tp

tpþ fn
;

F1 ¼ 23
precision3recall

precisionþ recall
; and

j ¼ PrðaÞ � PrðeÞ
1� PrðeÞ

Subsequently, we compared the erythrocyte area detected

automatically using ARETE in a pixel-wise manner with the

majority voted mask obtained from markups of the experts.

This logical operation combines two different masks by creat-

ing a new mask containing all pixels of both individual

experts. Cohen’s j coefficient was classified according to the

scale of either Landis and Koch (35) or Fleiss (36).

RESULTS

Human placental chorionic tissue was used to develop

the automated erythrocyte detection system (ARETE). This

tissue represents the interface between maternal and fetal

blood circulation, and consequently high local numbers of

erythrocyte are found (Figs. 1a and 1b). Mature erythrocytes

appear as circular disks, biconcave in profile, and are a-nuclear

with an average diameter of about 7.5 lm. The size and shape

of erythrocytes gives them a characteristic appearance in trans-

mission microscopic images that allows for their self-evident

identification by the human observer (Figs. 1a and 1b). When

investigating expression levels of various placental proteins

using immunofluorescence microscopy, we observed that the

erythrocytes contained in fetal vessels (Fig. 1b) exhibited

Table 1. Summary of all computed statistical measures during the evaluation of ARETE

PERFORMANCE ON THE TRAINING-SET

Recall/Sensitivity 0.9987
Specificity 0.9981

Medians of Human experts ARETE

Precision 0.63 0.52

Recall/Sensitivity 0.88 0.60

F1 Score 0.76 0.55

Specificity 0.92 0.85

Cohen’s j coefficient [(25) Cohen, 1960] 0.68 0.41

Landis and Koch (22) No: 0–20 Slight: 20–40 Fair: 40–60 Substantial: 60–80 Almost perfect: 80–100

Fleiss (23) Poor: 0–40 Fair to good: 40–75 Excellent: 75–100

Figure 1. Transmission image (a) of a paraffin section of human placental chorionic tissue where multiple erythrocytes are visible (dark

gray structures, indicated by asterisks). (a) subregion of this transmission image (b) with corresponding images derived from three indivi-

dual fluorescence channels (c) 470-nm ex/525-nm em, (d): 560-nm ex/630-nm em, and (e): 620-nm ex/700-nm em). Arrows indicate the tar-

get staining [cytokeratin 7 (c), receptor for advanced glycated end products (RAGE) (d), cytokeratin 7 and gamma smooth muscle-actin

(e)], whereas asterisks indicate the positive staining contributed by erythrocytes.
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bright autofluorescence at 470-nm ex/525-nm em (Fig. 1c), at

560-nm ex/630-nm em (Fig. 1d) as well as 620-nm ex/700-nm

em (Fig. 1e). Their local fluorescence intensity values often

exceeded the intensity values of the antigens under investiga-

tion such as cytokeratin 7-Alexa Fluor 488 (Fig. 1c), RAGE-

Alexa Fluor 568 (Fig. 1d), or a combination of cytokeratin 7

and gsm-actin-Alexa Fluor 647 (Fig. 1e). On the basis of this

observation, we conclude that erythrocyte-associated auto-

fluorescence could significantly influence and falsify auto-

mated segmentation and quantification of proteins (see also

Fig. 4).

Automated detection of erythrocytes in

paraffin-embedded tissue sections

To minimize the local erythrocyte-associated autofluores-

cence in the context of tissue cytometry, we sought after an

automated erythrocyte detection tool that would enable us to

reduce or eliminate these cells in-silico. To overcome the lim-

itations owing to restricted availability of fluorescence chan-

nels on the microscopes available in different laboratories,

time-consuming execution of complex multi-staining proto-

cols, and determination of specificity of antibodies against

erythrocyte-specific antigens (such as CD233), we devised

ARETE on transmission images co-acquired with immunoflu-

orescence-stained images (see Fig. 1a). As the shape and size

of erythrocytes is easily identified by humans, we thought to

train the computer to identify these cells as well.

The principal workflow of ARETE is depicted in Figure

2. Microscopic transmission images (Fig. 2a/b) serve as input

enabling the localization of erythrocytes. We used a machine

learning system employing a cascade of boosted decision

trees and trained it on 8640 small image areas (15 3 15 pix-

els) containing tissue-associated erythrocytes (some of them

indicated in Fig. 2c) and 4,000 erythrocyte-negative tissue

areas. When applying ARETE on transmission images

derived from tissue sections, the trained cascade was used to

detect erythrocytes within small rectangles moved over the

input mask. If an erythrocyte was detected, a circle with a

Figure 2. Schematic workflow of ARETE. (a,b) After co-acquisition of a transmission image corresponding to fluorescence images exhibit-

ing autofluorescence, (c) a cascade of boosted decision trees of Haar-like features previously trained on 8,640 positive samples and 4,000

negative samples for erythrocytes is employed to classify small rectangular subregions of the transmission image resulting in a binary

mask (d). This mask can be combined with corresponding fluorescence channels (e, f) to enable in silico subtraction or extraction of eryth-

rocyte-associated autofluorescence.
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radius of 8 pixels was inscribed. Though a circle only approx-

imates the individual shape of an erythrocyte, a fact that may

contribute to FP pixel resulting from erythrocytes that differ

from the shape of a circle, it allowed for a much faster proc-

essing (4 sec/image) compared to additional analysis of each

window to detect the exact shape of the erythrocyte (up to

12 sec/erythrocyte).

ARETE results in a versatile binary output mask (Fig. 2d),

which can serve to subtract areas containing autofluorescent

erythrocytes from corresponding fluorescence images

(Figs. 1e–1f).

Specificity and sensitivity of ARETE on a subset of the

training set

To evaluate the performance of the trained cascade, we

computed the specificity and sensitivity on the training set. A

high score assures that the employed features learned the pat-

terns of the target structure (erythrocytes). In both the cases,

the values were close to 1 (Table 1).

Comparison of erythrocyte-masks delivered

by ARETE and human experts

In many fields, the humans remain the main reference

for the capability of any algorithm (37). This ‘‘gold standard’’

derived from human markups was also set to be the upper

performance limit of ARETE. However, in the evaluation of

algorithms for medical image segmentation, it has to be kept

in mind that the manual segmentation by humans is affected

by intra- and interexpert variability (10). To account for the

known inter-observer differences, at least two human experts

independently inspected 24 transmission images derived

from placental tissue and marked the areas covered by ery-

throcytes as described in Materials and Methods section. Fol-

lowing a pixel-wise comparison of single expert masks against

a majority voted (MV) mask, we calculated several measures

such as precision, recall/sensitivity, the F1 score that com-

bines both measures, specificity, and Cohan’s j coefficient

(25) to estimate the inter-rater agreement of the human

experts.

Figure 3. The upper part shows a subregion of a transmission image (a) with the corresponding manual expert markup (b), ARETE’s output mask

(c), and a mask containing the extracted erythrocytes (d). This montage also illustrates the uncertainty because of different markups techniques of

ARETE and the human expert. Beneath, a quantitative comparison of the 28 output masks of ARETE with ground truth data generated by at least

two human experts is shown in e—g. Masks derived from 24 images were compared by computing the measures precision, recall/sensitivity, the

derived F1 score, and specificity. The whiskers show the 10% and 90% percentiles. Outliers are plotted as black dots. The line within the box-plot

indicates themedian. A (ARETE), E (single human expert), MV (Majority voting of experts), F1 score (harmonicmean of precision and recall).
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Likewise, the ARETE-output masks, exemplified in Figure

3c, were compared pixel-wise with the majority voted (MV)

mask. Visual comparison of the returned erythrocytes mask

with the transmission images indicated good agreement (see

montage in Figs. 3a–3d). A quantitative comparison over all

28 images between ARETE and experts is shown in Figures

3e–3h, depicting precision (Fig. 3e), recall/sensitivity (Fig. 3f),

the F1 score that combines both measures (Fig. 3g), and speci-

ficity (Fig. 3h). We calculated Cohen’s j coefficient and ranked

the agreement between ARETE and the human experts accord-

ing to the scale introduced by either Landis and Koch (35) or

Fleiss (36). All statistical results are summarized in Table 1.

With respect to specificity (indicating the rate of pixels fal-

sely classified as belonging to erythrocytes), ARETE’s median per-

formance approximated the human performance well. When

measuring precision and recall/sensitivity as well as the derived

F1 score, the measures derived from comparing ARETE with

human experts were lower than for inter-observer agreement.

The agreement of ARETE with human experts and the

inter-rater agreement were also assessed via Cohen’s K coeffi-

cient. When classifying these values according to the scale

introduced by Landis and Koch (35) from 0 (poor) to 1.0

(almost perfect), ARETE achieved a moderate (Cohen’s j coef-

ficient 5 0.41) agreement, which is one class worse compared

to human experts, which were classified as having substantial

agreement (Cohen’s j coefficient 5 0.68). In contrast, when

applying the scale of Fleiss (36), both ARETE versus human

experts agreement and human inter-rater agreement were

regarded as fair to good.

To assure comparability of the round masks generated by

ARETE with the expert’s ground truth masks, we additionally

compared ARETE with a set of eight images that were marked

up by four experts using the same approach as ARETE (fixed

circle radius of 8 pixels). No significant change in the above

measures was observed (data not shown).

Application of ARETE—Exemplifying the effect of

erythrocyte-associated autofluorescence on

automated image segmentation and quantification

Human placenta. To analyze protein expression patterns

in human placental chorionic tissue, we recently introduced

an image segmentation algorithm (28). This approach identi-

fies a multinuclear epithelial cell type (syncytiotrophoblast)

via cytokeratin 7 staining. Subsequently, it also allows for

identification of total chorionic tissue area, which is comple-

tely covered by the syncytiotrophoblast and enables discrimi-

nation of the syncytiotrophoblast cell area from other cell

types in the so-called stromal core of the chorionic tissue (fetal

endothelial cells, macrophages, fibroblasts, and other cell

types). To exemplify the significant influence of erythrocyte-

associated autofluorescence on segmentation and subsequent

protein quantification within the two segmented tissue areas

of the chorionic placental tissue (syncytiotrophoblast and

stromal core), seven regions (each 9 3 9 images) of placental

chorionic tissue were analyzed for the expression level of the

protein RAGE either in the presence of erythrocytes or after

erythrocyte in silico removal by ARETE. As can be seen in Fig-

ure 4, erythrocyte-associated autofluorescence adds to the level

of quantitated RAGE protein in both the syncytiotrophoblast

(Fig.4a, 7–14%) and the cells found in the stromal core (Fig.

4b, 4–10%). It can be deduced from the figures that the indivi-

dual placental samples contained varying amounts of erythro-

cyte-associated autofluorescence, which does not allow for the

subtraction of a ‘‘mean value of erythrocyte-associated auto-

fluorescence’’ from all regions analyzed, but requires image-

specific erythrocyte removal.

Human colon. In other tissues such as colon, even the pre-

sence of small numbers of erythrocytes can falsify results.

Lower cellular proliferation in colon cancer is associated with

advanced disease stage and a shorter disease-free survival, in-

Figure 4. Effect of in silico removal of erythrocytes by ARETE on the automated quantification of expression levels of the receptor for

advanced glycated end-products (RAGE) in human chorionic tissue. Seven regions of placental tissue sections (1—7, each composed of 9

3 9 images) were segmented based on cytokeratin 7 staining (16) to obtain areas corresponding to the multinucleated cell-type syncytio-

trophoblast (STB; a) and all other cells contained in the stromal core of the chorionic tissue (nSTB, b). After this segmentation, the RAGE-

derived fluorescence intensities values associated with these individual areas (STB, nSTB) were calculated and plotted prior (dark gray)

and after (light gray) in silico removal of autofluorescence derived from erythrocytes by ARETE. Subtraction of the erythrocyte mask gener-

ated by ARETE from the original fluorescence images used to calculate RAGE expression levels (16) decreased (light gray) of RAGE expres-

sion in the syncytiotrophoblast (STB) by 7—14% (a) and by 4—10% in the stromal core associated cells (nSTB; b) compared with the origi-

nal unmodified images (dark gray).
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dependently of adjuvant chemotherapy received by some

patients (38). To improve diagnosis and prognosis, the detec-

tion of single cells or small groups of epithelial cells in colon

cancer tissue and their analysis for expression level of prolifer-

ative marker Ki-67 can indicate the metastatic potential of the

tumor. We stained colon tissue sections with antibodies speci-

fic for epithelial cell antigens (Cytokeratin 8, CK8) and prolif-

erative marker Ki-67. Nuclei were detected using DAPI. For

evaluation, we made use of existing commercial software tools

based on cell-segmentation after nuclei detection (Tissue-

Quest/TissueGnostics GmbH). In Figure 5a, the epithelial cells

within the tissue have been visualized through CK8 staining.

Erythrocytes exhibit bright autofluorescence, which is visible

in the CK8 channels (Fig. 5a) and also in the DAPI detecting

channel that is used to identify cells and in the Ki-67 staining

that identifies proliferating cells. On the basis of the DAPI

staining, the automated segmentation outlined all cells expres-

sing the epithelial marker CK8 in green and those cells that

were positive for CK8 in red, and in addition demonstrated

Ki-67 expression (Fig. 5b). Within this area, 479 cells positive

for both markers were automatically counted in the presence

of erythrocytes. However, erythrocytes localized in this image

(some indicated by arrows) falsified the result. Following their

detection by ARETE and subsequent in silico removal, the

number of CK8/Ki-67-positive cells was reduced significantly

by 18% to 393 (Fig. 5c). For better illustration, the area in the

square is magnified in Figures 5d–5g. Because of the auto-

fluorescence of erythrocytes in the DAPI (Fig. 5g) as well as

CK8 (Fig. 5f) and Ki-67 (Fig. 5d) channel, erythrocytes con-

tributed significantly to a number of cells detected as being

double-positive for CK8 and Ki-67. A dramatic reduction

from 7 to 2 double-positive cells was detected in this area after

in silico removal of erythrocytes (compare Figs. 5d and 5e).

This computed result was confirmed by human expert visual

inspection.

DISCUSSION

Advantages of ARETE over histochemical reduction of

autofluorescence

Erythrocytes contained within tissues can significantly

influence automated protein quantification. Indeed, we

demonstrate by the application of ARETE that in immunoflu-

orescence-stained tissues, erythrocyte-autofluorescence falsely

increased apparently RAGE expression by 4–14% in placenta,

and the number of proliferative epithelial cells in colon cancer

by 18%. In principle, it is possible to control autofluorescence

by chemical treatments of samples via at least three different

strategies. First, extraction of the autofluorescent constituent

by dissolution using, for example, ammonia-ethanol; second,

Figure 5. Effect of in silico removal of erythrocytes by ARETE on

the automated detection of cytokeratin8 (CK8)/Ki-67 double posi-

tive cells in human colon cancer tissue. A paraffin section of the

tissue was processed using immunofluorescence microscopy to

detect epithelial cells (CK81; a) that also expressed the prolifera-

tion marker Ki-67. Nuclei were stained with DAPI. Following auto-

mated image acquisition, cells were segmented via nuclei detec-

tion using Tissue Quest 4.0. All detected cells are outlined in

green, those expressing CK8 as well as Ki-67 are outlined in red.

(a) shows the CK8 positive epithelial cells. This image was pro-

cessed without (b) and with (c) erythrocyte removal by ARETE. In

(d), the autofluorescence of erythrocytes leading to false positive

Ki-67 cells in the CK8 channel is exemplified. Application of

ARETE reduced the amount of Ki-67 positive cells by 18%. The

arrows in (b,c) indicate where cell-touching erythrocytes caused

false-positive Ki-67 cells. A rectangular subregion is shown mag-

nified in (d) and (e) with the corresponding fluorescence channels

for CK8 (f) and DAPI (g). In this subregion, the arrowheads point

out false-positive cells (n 5 5).
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by chemical modification of the fluorochrome by, for example,

borohydride (in case of aldehydes), and third, by masking the

autofluorescent structures by appropriate stainings, for exam-

ple, Sudan black B (18). Though these strategies for the elimi-

nation of autofluorescence prior to (immuno-)fluorescence

microscopy exist, the study from Baschong (18) indicated that

a general recipe for the (chemical) control of autofluorescence

in different samples is not available. For example, borohy-

dride, which is a confirmed requisite for autofluorescence con-

trol in glutaraldehyde-fixed tissue (39), had a paradoxical

effect in formaldehyde-fixed tissue, where it induced bright

fluorescence in erythrocytes. Therefore, success in reducing

autofluorescence with chemical reagents always requires a tac-

tical approach with the choice of the appropriate reagent(s)

(single or combined) for the specific tissue type, fixation me-

dium, processing technique, and wavelength of excitation

light. In conclusion, the establishment and execution of any

protocol for autofluorescence removal is time consuming. In

addition, interference of the developed protocol with the

immunodetection of a protein under investigation needs to be

tested. Overall, the established protocol has to be re-evaluated

any time a new fixation technique, tissue, or antigen is under

investigation.

To circumvent these troubles, we introduced ARETE,

which is the first prototype of a detection system operating on

transmission images to detect erythrocytes in tissue sections.

In contrast to the time-consuming protocols for chemical

treatments, ARETE generates the ‘‘erythrocyte mask’’ from the

transmission image within 4 sec/image. An interference

because of the erythrocyte detection with the specific staining

in any of the fluorescence channels does not exist as the algo-

rithm works on transmission images. Because of the short ac-

quisition time for transmission images (1 msec), their genera-

tion does not cause bleaching/reduction of specific fluores-

cence signals. As it operates on transmission images, the

dedication of any fluorescent channel of the microscope for

detection of erythrocytes via specific antigens is unnecessary

and allows for using all microscope channels for detection of

proteins of interest.

Performance of ARETE

Speed. ARETE is based on a cascade of boosted decision trees

of Haar-like features, which is a machine-learning approach

able to handle a variety of complex structures such as pedes-

trians (40), faces (33), hand gestures (41) and clathrin-coated

pits (42). In tissue cytometry, one main idea is to investigate

large areas of the tissue instead of single images in order to

obtain enough data for statistically significant evaluation.

Therefore, rapid processing is an important issue. Boosted de-

cision trees of Haar-like features allow for fast high-through-

put analysis compared to other approaches used to segment

bright-field images such as cascades of support vector

machines (43). Support vector machines need all input fea-

tures for classification and therefore compute all features for

each patch instead of just a small number related to tree size

as the decisions trees used for ARETE. Because of this, the sup-

port vector machines detection system is likely to be several

orders of magnitude slower than ARETE [no data on runtime

is given in (43)].

Validation of ARETE

Evaluating the output of ARETE is nontrivial as a variety

of factors influence the validation. Compared to other

approaches (24) where the evaluation of erythrocyte detection

and classification was done on an object level, we had to deal

with a pixel-wise comparison. Because of the small shape and

huge number of erythrocytes in the images derived from pla-

cental tissue sections, it is not feasible to delimit the area of

each single cell exactly by hand while generating a ground-

truth markup. Our experts used the pen tool of Adobe Photo-

shop and delimited areas of erythrocytes instead of delineating

every single cell. This however results in a fuzzy ground-truth

dataset. Additionally, ARETE inscribes circles at each detected

erythrocyte location, an approximation that takes about 4 sec/

image. Detecting the real shape was originally tested, but

turned out to slow down the process tremendously (12 sec/

erythrocyte). Detecting true shapes of erythrocytes in such

huge microscopic images (approximately 91.2 megapixel) with

several thousands of erythrocytes was therefore sacrificed for

the sake of speed.

Regardless of the process that detects erythrocytes, the

result is always a pixel-based area mask that marks regions

containing erythrocytes. In case of ARETE, the detected out-

put mask is composed of the predicted erythrocytes location

with approximate average sizes of erythrocytes at the given

image resolution. In case of the biological experts, most of the

output masks were created using paintbrushes of fixed size

corresponding to approximate average sizes of erythrocytes.

We conclude that both output masks are comparable as their

output depicts the same information albeit attained through

different means. To confirm this, we generated additional

ground truth data, where the experts labeled erythrocytes in

the same way as ARETE did, namely by placing a circle with a

radius of 8 pixels on each erythrocyte. This slightly different

modus of generating the ground truth did not significantly

change the results of the validation of ARETE versus human

erythrocyte detection in tissues.

A visual comparison of the returned erythrocytes mask

with the human expert markups suggested good agreement

(Figs. 3a–3d). In addition, as has been noted by others

recently, a ground truth for medical image segmentation gen-

erated by humans is influenced by intra- and interexpert vari-

ability (44). Merging of the ground truth data of several

experts to reduce intervariability is not trivial and furthermore

raises the problem of disposition of various human experts to

label many events on multiple images.

The median of the recall of ARETE was lower than that of

single experts compared to ground truth data (Experts 0.88 vs

ARETE 0.60). This can be related to two observations. First,

erythrocytes exhibit various shapes depending on age and

pathological settings as described first by Bessis (45). We

assume that even the large training set of more than 8,000

erythrocytes did not fully cover all possible variations. Second,

ARETE performed weak on areas containing large vessels with
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a very high number and density of erythrocytes. High density

may also alter the shape of the erythrocytes. In practice, it is

currently feasible to exclude such vessels from acquisitions by

intelligent drawing of regions of interests, whereas exclusion

of single erythrocytes next to other cells is not practicable.

To overcome this issue, retraining the system with more

erythrocytes—such as erythrocytes selected from difficult

areas or erythrocytes training sets selected by many humans to

exclude any bias in the selection of erythrocytes—could solve

that problem. Indeed, sensitivity and specificity of ARETE on

a subset of the training set was very high (see Table 1), indicat-

ing that almost all of the (single) erythrocytes selected for the

training are perfectly well detected. Banko (46) showed that

the performance of learners could benefit significantly from

much larger training sets. Thus, assuming that enough train-

ing samples are collected from different persons and from, for

example, large vessels—or tissues other than placenta or colon

used in this study—the recall of ARETE could be improved.

We also considered other approaches for improving the per-

formance of ARETE. Selinummi (47) presented a system that

integrated multiple bright-field images taken at different z-

levels via relative standard deviation to obtain a higher con-

trast bright-field image for improved segmentation. However,

the authors themselves note in the Discussion section that they

only used images with low contrast all around the cells, and

cells without clearly visible cell borders, whereas our erythro-

cytes are clearly defined cells with strong borders and high

contrast around the cells. Also, because mature erythrocytes

are relatively small cells (6–8 mm diameter, �2–3 mm height),

at most three z-levels could be combined, which is the mini-

mum necessary number of z-levels to actually compute the

relative standard deviation, possibly leading to noisy estimates.

Also, taking bright-field images at different z-levels takes more

time during which the sample needs to be illuminated, which

increases photo-bleaching in all fluorescent channels, possibly

hampering or disrupting image analysis.

Precision for ARETE was 0.52, whereas the experts

achieved 0.63. Figure 3d illustrates the cut-out erythrocytes.

Obviously, there are pixels next to the found erythrocytes that

are FPs. On the contrary, it can also be seen that the erythro-

cytes are fully captured by the circles, therefore their auto-

fluorescence will not interfere with subsequent target protein

quantification.

The F1 score is derived from the precision and recall/sen-

sitivity, therefore the difference (Experts 0.76 vs ARETE 0.55)

can be explained as in the case of precision and recall. In con-

trast, the median specificity of ARETE was 0.85, which is only

about 10% smaller compared with the maximal achievable

performance set by the human experts (0.92).

Finally, we also calculated Cohen’s j coefficient, a value

that measures the agreement between two raters. Statistical sig-

nificance for kappa is rarely reported; instead several guidelines

have been introduced to define the magnitudes of j that reflect

adequate agreement. When classified according to the scale

introduced by Landis and Koch (35), with a Cohen’s j coeffi-

cient 5 0.41, ARETE is only one class below the human per-

formance (moderate vs substantial). When classified according

to the scale of Fleiss (36), both the agreement of ARETE with

experts and the inter-rater agreement were found to be ‘‘fair to

good.’’ Therefore, we conclude that overall, ARETE currently

approximates the performance of human experts.

The major benefit of ARETE is to perform fast and auto-

matic large-scale analysis of tissue sections and enable mean-

ingful statistical analysis. This is important in the context that

although humans are capable of accurate analysis of tissue

areas of limited sizes, these areas may not be representative for

the entire tissue section (48).

To the best of our knowledge, ARETE is the first proto-

type that operates on nonstained tissues. By manipulating

acquired microscopic images with erythrocyte masks, it is pos-

sible to combine ARETE in a workflow with open source and

commercially available software such as TissueQuest (Tis-

sueGnostics GmbH).

With suitable training samples, the future applications of

ARETE may include the detection and quantification of

healthy erythrocytes in order to study vasculo-/angiogenesis

and pathologically altered erythrocytes in metabolic or infec-

tious diseases (49).
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