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Common Problem with DTs: Overfitting
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How to avoid Overfitting for DTs

Pre-Pruning

Stop spli tting a node further (even if it still contains examples of different classes,
and even if some attributes are still available) if there seems to be no statistically
significant correlation between attributes and classes

Post-Pruning

First construct (possibly complex) tree that is maximally consistent with the
training data (i.e., has minimum error on training data)

Then simplify the tree by cutting off branches and subtrees that seem harmful.

Effects of Pruning

•  Simpler trees with lower accuracy on the training data but possibly higher
accuracy on new, unseen data.

•  Improves handling of attribute and class noise
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Pre-Pruning

Pre-Pruning: X2 Test
(pronounced: Chi-Square)

If A is completely irrelevant to the class of an object in C, the expected value of
pi is pi' = p * |Ci|/|C| and the expected value of ni is ni' = n * |Ci|/|C|, where p
and n are the number of positive resp. negative examples of the class.

⇒ The larger the differences |pi - pi'| and |ni - ni'| , the smaller the likelihood that
A is completely irrelevant.

⇒ Statistic   is approximately X2 distributed with k-1 d.o.f.

⇒ Perform X2 test: S large enough? (Intuition: the smaller S, the higher the
probabilit y that A is irrelevant to the class (i.e., class is independent of A))

⇒ Prune (stop refining a node) if there is no relevant A at given confidence level

C=A?

C2C1 C3 Ck...

v1 v2 v3 vk

p/n

p1/n1 p2/n2 p3/n3 pk/nk

∑
=

−− +=
k

i
n
nn

p
pp

i

ii

i

iiS
1

'
)'(

'
)'( 22



© Alexander K. Seewald
alex@seewald.at / alex.seewald.at

5

Post-Pruning

Reduced Error Pruning (Pseudocode)

1. Randomly split training examples TD into a training set TS (usually 70%) and
a pruning (validation) set PS (usually 30%)

2. Learn a (possibly complex) tree from TS that is as consistent with the data as
possible (i.e., that possibly overfits the data)

3. Perform tree simpli fication step:

For each subtree Ti of T, tentatively replace Ti by a majority class leaf

4. Compare the accuracy on PS(!) for all modified subtrees with accuracy of
original T on PS:

• If there is no Ti that improves accuracy on PS when removed: exit

• Otherwise: remove (and replace with leaf) Ti with maximum improvement.

5. Go to 3.

Question: Why additional pruning set PS? Why not use original training set TD
for making pruning decisions?
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Post-Pruning without Validation Set: PEP

Pessimistic Error Pruning (PEP)

(used in well-known C4.5 decision tree learner)

Replace subtree Ti by a majority class leaf, if and only if

E+0.5 < ∑ J + L(Ti)/2 + SE

where...

∑ J number of training set errors for subtree Ti before replacing

E number of training set errors when replacing Ti by a leaf (only for
those examples which are within the subtree Ti)

L(Ti) total number of leaves in subtree Ti

SE standard error:

∑ K number of examples in subtree Ti (=pi+ni=|Ci|)

+ no need for validation set - all training data can be used; very efficient

– heuristic is ad-hoc and not reasonably grounded in statistical theory
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Def.: Missing values

Missing values occur when values of some attributes are unknown for some
examples. This can have a variety of reasons:

• not applicable - Attribute is not valid for current example; e.g. gender for legal
persons (companies), results of medical examinations which were not executed

• not valid - Attribute value is invalid, e.g. due to data entry errors, errors in data
conversion during preprocessing, or measurement errors. For example, the
attribute value of -12 for humidity (in percent).

• truly missing - Attribute is valid but has not been measured; e.g. due to
measurement device error, people choosing not to answer some questions in a
questionnaire (income) etc..

...

• unknown - It is unknown why the value has been marked as missing, usually
due to insuff icient documentation of the data cleaning process.

Missing values are usually encoded by ?
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How to treat MV?

Common solutions
• Ignore examples that are incompletely described (i.e. have at least one MV)

⇒  waste of valuable data
• Introduce missing as a special value and treat it like the other attribute values

⇒  useful for not applicable MVs, but can lead to paradoxical situations
• For Decision Trees, split i ncomplete example with MVs into virtual examples:

– Compute probabili ty (rel.frequency) pri for each value vi of attribute A.
– Assign fractional example (weight=pri) to each corresponding branch
– Classification of new, incomplete examples works analogously: when

encountering a split on an attribute that is missing, propagate example
through all subtree and returned pri-weighted sum of classes.

• For Bayesian methods,  MVs are modelled as an uniform probabili ty
distribution over all possible values of a missing attribute.

• Complete incomplete examples by replacing ? with a default value (e.g. the
most common value of this attribute in the training data, or mean/mode of
numerical attributes). Simplest approach, which explains its widespread use
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Bayesian Methods & Bayes Theorem

Bayesian Methods provide the basis for probabilistic reasoning:

• Theoretical framework for machine learning, classification, knowledge
representation and analysis.

• Allows to integrate uncertain and partial domain knowledge

• Direct modeling of uncertainty

• Easily handles noisy and incomplete data sets with MVs

One cornerstone of Bayesian Methods is Bayes' Rule:

The probability of function/model f given training data TD is equal to the
probability of TD given f multiplied by the (prior) probability of h divided by
the (prior) probability of TD. All classification methods can be seen as
estimating Bayes' Rule, with different techniques to estimate P(TD|f).
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Maximum Likelihood

Among all f from Concept Space CS, choose f which has highest probabilit y given
training data TD. This is the maximum a posteriori (MAP) model:

In some cases, we can assume every f ∈ CS to be equally probable. In that case,
the above simpli fies to the maximum likelihood (ML) model:

Example: Cancer diagnosis
Two hypotheses: cancer, ¬cancer (|CS|=2)
Diagnostic test for cancer with two outcomes: ⊕ = + , ∅ = –
Known prob.: P(cancer) = 0.008 P(¬cancer) = 0.992
(sensitivity) P(⊕ | cancer) = 0.98 P(∅ | cancer) = 0.02

P(⊕ | ¬cancer)= 0.03 P(∅ | ¬cancer)= 0.97 (specificity)
P(cancer | ⊕) = P(⊕ | cancer)P(cancer) = 0.98 * 0.008 = 0.0078 (21%)
P(¬cancer | ⊕)= P(⊕ | ¬cancer)P(¬cancer) = 0.03 * 0.992 = 0.0298 (79%,MAP)
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Basic Probability Formulas
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Bayes Optimal Classifier

So far, we have searched for the best f ∈ CS. However, it is possible to do better
by combining all functions/models in CS, weighted by posterior probabil ities:

where Class is the set of possible classes, TD = training data, CS = concept space.

This is the Bayes Optimal Classifier.

Advantages

• Optimali ty: No other classification method with same CS and same prior
knowledge can outperform this method (on average). This method maximizes
the probability that the new instance is classified correctly, given the available
data TD, concept space CS and posterior prob. over all the hypotheses f.

• Predictions correspond to a function/model not in CS – more general than CS!

Disadvantages

• Needs to sum over all possible functions f. Very costly and often intractable.

• Probabiliti es are usually unknown, and some of them are very hard to estimate.
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Gibbs Algor ithm &  Naïve Bayes

Gibbs Algorithm is a more eff icient but less optimal classifier. Under certain
conditions it has at most twice the error rate of the optimal Bayes classifier.
However, it is still very ineff icient.

Gibbs Algor ithm

A very eff icient classifier is obtained by assuming the attributes to be
conditionally independent (P(Ai|Aj)=P(Ai) for ∀i,j). This is Naïve Bayes:

P(Clj) and P(ai|Clj) can be eff iciently estimated from training data TD by
counting. This is a commonly used classifier in machine learning, and works
reasonably well even when the conditional independence assumption is
violated.

1.  Choose a function f from CS at random, according to posterior probabilit y
distribution over CS (i.e. P(f |TD))

2.  Use f to predict the classification of next instance x.
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Example: Weather dataset

Classify weather dataset with Naïve Bayes

• Estimate P(Clj): P(yes)=9/14, P(no)=5/14

• Estimate P(ai|Clj), i.e. probabilit y of attribute i
having value ai, given class of Clj:

yes no
overcast 4 0

rainy 3 2
sunny 2 3

Play?
Outlook yes no

true 3 3
false 6 2

Windy
Play?

P(outlook=overcast | yes)=4/9    P(w.=t | yes)=3/9

P(outlook=rainy     | yes)= 3/9   P(w.=f | yes)=6/9

P(outlook=sunny    | yes)= 2/9

P(outlook=overcast| no) = 0/5   P(w.=t | no) =3/5

P(outlook=rainy     | no) = 2/5   P(w.=f | no) =2/5

P(outlook=sunny    | no) = 3/5
Problem: Estimates may be zero ⇒ P(no | outlook=overcast) would always be 0.

⇒⇒ Laplace cor rection: Use (a+1)/(b+1) instead of a/b, e.g. 1/6 instead of 0/5.

O ut lo ok T H W indy P lay?
overcast 6 4°F 6 5% true yes
overcast 7 2°F 9 0% true yes
overcast 8 1°F 7 5% f al se yes
overcast 8 3°F 8 6% f al se yes

rai ny 6 8°F 8 0% f al se yes
rai ny 7 0°F 9 6% f al se yes
rai ny 7 5°F 8 0% f al se yes
rai ny 6 5°F 7 0% true n o
rai ny 7 1°F 9 1% true n o
sunny 6 9°F 7 0% f al se yes
sunny 7 5°F 7 0% true yes
sunny 7 2°F 9 5% f al se n o
sunny 8 0°F 9 0% true n o
sunny 8 5°F 8 5% f al se n o
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Example: Weather dataset (2)

• For quantitative / numerical variables,
probabilit ies cannot be determined by counting.
Probabilit y density functions must be defined.
Common assumption: Values are normally
distributed. Then, arithmetic mean and standard
deviation define a normal probabilit y density
function as follows:

O utlo o k T H W indy P la y?
overcast 6 4°F 6 5% true yes

rai ny 6 8°F 8 0% f al se yes
sunny 6 9°F 7 0% f al se yes
rai ny 7 0°F 9 6% f al se yes

overcast 7 2°F 9 0% true yes
sunny 7 5°F 7 0% true yes
rai ny 7 5°F 8 0% f al se yes

overcast 8 1°F 7 5% f al se yes
overcast 8 3°F 8 6% f al se yes

rai ny 6 5°F 7 0% true n o
rai ny 7 1°F 9 1% true n o
sunny 7 2°F 9 5% f al se n o
sunny 8 0°F 9 0% true n o
sunny 8 5°F 8 5% f al se n o
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µ 73.0 74.6
σ2 38.0 62.3

Temp.
Play?

yes no
µ 79.1 86.2
σ2 104.4 94.7

Hum.
Play?

where µ and σ2 are chosen depending on Clj and Ai

E.g. for P(temp.=x | no) use µ=74.6 and σ2=62.3;

for P(hum.=x | yes) use µ=79.1 and σ2=104.4 etc..
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Example: Weather dataset (3)
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Classify example xn = { outlook=overcast, temp.=18°F, hum.=53%, windy=false}
(using simple Laplace correction for probabiliti es, e.g. 10/15 instead of 9/14 etc.)
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⇒  predict Play=no.

Notice that since P(TD) is not known, these are not yet real probabili ties (i.e. they
do not sum to 1), but have to be normalized: P(no|xn)=99.992%, P(yes|xn)=0.008%
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Bayesian Belief Networks

Naïve Bayes: Assumes conditional independence of all attribute. If this is true,
then it outputs the optimal Bayes classification. However, in many cases this
assumption is overly restrictive.

⇒⇒ Bayesian Networks: Allow arbitrary conditional dependence. Dependency
information can be learned from training data, or specified as background
knowledge. Usually visualized as directed acyclic graph (DAG)

E.g. given a burglary, what is the prob.

that John calls?

Exact computation of complex queries is NP-hard(!)
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Common Preprocessing Steps

Some learning algorithms only accept quantitative X

• 2 values ⇒ map to one quantitative variable as 0/1 or -1/1

• n values ⇒ map to n quantitative binary variables, only one of which is on
(=1). Also called 1-of-n coding, dummy variables.

Some learning algorithms only accept quantitative Y

• 2 values ⇒ map as above, and map the prediction Y back via simple treshold

(0.5 for 0/1 and 0 for -1/1)

• n values ⇒ multiple models have to be learned; e.g. map as above and use one
binary variable for each of n models. More complex mappings are possible.

Some learning algorithms do not accept quantitative X or Y

• Discretize values to a qualitative variable with ordinal scale

• Some information is inevitably lost - performance does not necessarily suffer.


