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Abstract

We describe an in-depth analysis of spam-filtering performance of a

simple Naive Bayes learner and two extended variants. A set of seven

mailboxes comprising about 65,000 mails from seven different users, as

well as a representative snapshot of 25,000 mails which were received over

18 weeks by a single user, were used for evaluation. Our main motiva-

tion was to test whether two extended variants of Naive Bayes learning,

SA-Train and CRM114, were superior to simple Naive Bayes learning,

represented by SpamBayes. Surprisingly, we found that the performance

of these systems was remarkably similar and that the extended systems

have significant weaknesses which are not apparent for the simpler Naive

Bayes learner. The simpler Naive Bayes learner, SpamBayes, also offers

the most stable performance in that it deteriorates least over time. Over-

all, SpamBayes should be preferred over the more complex variants.

Keywords: Empirical study, Spam filtering, Machine Learning, Naive Bayes
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1 Introduction

Spam has become a problem of global impact. According to a study undertaken

for the European Commission, Internet subscribers worldwide wasted an esti-

mated 10 billion Euro per year just in connection costs due to Spam already

in 2001 [15]. Economic impact is only part of the problem – waste of time,

resources and the gradual erosion of trust in EMail communications should also

be considered. Within the scientific community these effects are felt strongly.

For example, at our institute the overall proportion of Spam now exceeds 90%.

For every nonspam mail, we thus receive around 15-20 spam mails – more than

1,000 spams per day per user in the worst case.

Several approaches exist to deal with spam [6]. Filtering approaches based

on simple message features such as the occurrence of certain words (e.g. Vi-

agra) are widely used. In fact, most email clients already allow their users

to manually build such email filters. However, the manual approach is time-

consuming and much expertise is needed to create useful filters from scratch.

Also, such filters need to be maintained and updated as they are an obvi-

ous target for spammers to attack. Such attacks usually work well. They

are aided by the human ability to recognize ambiguous words. For example,

there are 600,426,974,379,824,381,952 ways to spell viagra comprehensibly, see

http://cockeyed.com/lessons/viagra/viagra.html.

Another option for filtering is to collect samples of spam and ham (i.e. non-

spam) and train a learning system. This has been proposed e.g. by [4] and

works surprisingly well even with simple statistical classifiers such as Naive

Bayes, which operate on large word occurrence vectors and utilize Bayes’ Rule.

Most state-of-the-art spam filters now include learning systems, e.g. Spam-

Bayes (spambayes.org), CRM114 (crm114.sourceforge.net) and SpamAs-

sassin (spamassassin.org). We will investigate all three of these approaches,
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the last one augmented by our own training procedure, SA-Train. The obvious

goal would be to train a model that is harder to attack, i.e. one that deteriorates

less over time than the manual filtering approaches.

There are also ready-to-use systems which do not need to be initialized for a

specific user, but work in a user-independent way. These use a variety of tech-

niques, e.g. Spam traps (honey pots) which collect spams sent to specifically set

up EMail adresses, manual rule creation, adaption or refinement; Naive Bayes

learning, or non-disclosed techniques. In [13], we have compared the perfor-

mance of various learning and ready-to-use systems, and found that the best

ready-to-use system (Symantec BrightMail 6) already performs competitively

to the best learning system (SpamBayes), which might seem to make training

spamfilters seem too much effort. However, the effort in updating and running

these systems is high and even only receiving updates may be prohibitive for

small research institutes or small companies. For example, during the evalua-

tion of the test version of BrightMail, around 700 megabytes of updates were

received weekly. Around 7 megabytes of ham and spam email are received at

our institute per user and week, so the break-even point – where the bandwidth

for BrightMail equals the email bandwidth – would be achieved at around 100

users. Below 100 users a locally trained filter may be preferrable for efficiency

and cost reasons.

Apart from these content-based systems there are also behaviour-based sys-

tems. These systems decide if a given mails is spam based not on its con-

tent, but on the behaviour of the sending mail server. Sending the same mail

to all accounts of a mail domain within a few milliseconds, or starting the

SMTP session with HELO followed by an IP address instead of a fully qual-

ified domain, as well as more elaborate techniques (e.g. greylisting - http:

//projects.puremagic.com/greylisting/whitepaper.html) have been pro-
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posed. The approach looks promising and would probably benefit from com-

bination with content-based approaches. Behaviour-based systems will not be

discussed here as completely different data would have to be collected.

Our main motivation was to evaluate our own novel learning approach to

train SpamAssassin (SA-Train) which has been developed and refined over a

year to two other state-of-the-art learning systems, CRM114 and SpamBayes.

Of these systems, both CRM114 and SA-Train can be seen as extensions of

Naive Bayes learning1 (represented by SpamBayes) in two different directions:

towards more complex concept descriptions (CRM114 : phrases with wildcards,

which also necessitates a more complex way to estimate phrase probabilities

via Markov Models), and by extending the NB learner with human background

knowledge (SpamAssassin: 900+ handwritten rules to recognize spam). In the

light of these conceptual similarities, we can rephrase our main motivation as

to determine whether these two ways to improve on Naive Bayes learning have

been successful. It will turn out that they have not been successful.

The choice to use existing state-of-the-art spam filtering systems rather than

a set of current machine learning algorithms on reasonable feature-based repre-

sentations was informed by earlier unpublished experiments where we found out

that it is indeed very hard to achieve the performance of refined spam filtering

systems from scratch. These systems – both learning algorithms and feature sets

– have all been fine-tuned over years on large, mostly private, mail collections

and we cannot hope to easily replicate their work. On the upside, an advantage

of our choice is that it effectively prevents implementation bias.

Previous studies, e.g. [2], have focussed on representative mailbox collections

from a single user, collected online during spamfilter training. The focus on a

single user is understandable, since collecting and cleaning mails is a major
1with usual setting for text mining: splitting each document (mail) into words, and using

each unique word as a feature in a binary word occurrence vector. The probabilities are
estimated in the usual way, see Section 4.3
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effort, and long periods of time are needed to obtain sufficiently large mailboxes

for extensive experiments. However, this limits the generality of the results, as

mailboxes are usually quite variable, and conclusions do not always agree.

Our approach compares results on seven different mailboxes, therefore the

results are likely to hold more generally. However, our mailboxes are not truly

representative since training a spam filter online (which would automatically col-

lect a representative set of ham and spam mails) is very costly: several months

are needed to achieve acceptable performance. During this period, all received

mails – ham and spam mails both – need to be thoroughly checked. None of my

colleagues was willing to spend so much time to obtain a good spamfilter. To

speed this process up, we have combined a set of recent spam mails with his-

torical ham mails from each user’s mailbox, and used this mailbox for training.

This set is no longer representative, as the time frame of ham and spam mails

is different. Additionally, the ratio of spam to ham mails is also different and

somewhat arbitrary. Even though these mailboxes are no longer truly repre-

sentative, the resulting SA-Train spam filters show exceptionally good perfor-

mance which remains stable for several months. This may be because concept

drift is much smaller for ham than for spam mails, and therefore the mixing

of recent spam mails with older ham mails does not affect generalization per-

formance adversely. In light of these positive results, we have chosen to use

non-representative mailboxes for the evaluation. However, the non-matching

timeframes of ham and spam mails prevents using these mailboxes to determine

the deterioration of performance over time due to concept drift. For this, we

had to use one representative mailbox by another user, #8.

Overall, the contributions of this paper can be summarized as an in-depth

analysis of three state-of-the-art content-based learning spam-filters – the learn-

ing methodology of one of them, SA-Train, due to our research – which incor-

5



porates the following aspects:

• Performance (FP and FN rate) with default thresholds

• Threshold-independent performance (i.e. FP/FN trade-off curves: plot-

ting FP vs. FN rate for a large set of thresholds at double-logarithmic

scales)

• (Class-)Noise-level susceptibility (default threshold only)

• Performance over time (default threshold and threshold-independent)

• Performance with simplified training procedures (default threshold and

threshold-independent)

• Relation between time-independent and time-dependent estimation of er-

ror w.r.t performance and shape of FP/FN trade-off curves.

• Effect of Concept Drift on performance w.r.t. different models and training

methods

The primay focus was to determine whether the extended Naive Bayes learning

systems (SA-Train and CRM114 ) outperform their ancestor, represented by

SpamBayes. The rest of the paper is structured as follows: Section 2 describes

related research. In Section 3, we will explain the evaluation measures we used.

In Section 4, we will describe the learning systems and how we trained each

one of them. In Section 5, we will describe our mailbox collection and how we

collected and cleaned it. In Section 6, we will shortly describe the remainder of

experimental setup. Section 7 is concerned with our primary experiments and

results. Section 8 is concerned with our experiments and results with respect to

concept drift. Section 9 summarizes the overall conclusions.
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2 Related Research

[2] presents a comprehensive study on eight months of personal mail, using

eleven variants of six open-source filters. Their evaluation is concerned with

sequential training efforts where we are interested in determining performance

on larger corpora. Concerning evaluation measures, their ham misclassification

fraction hm is equivalent to our FPrate, and their spam misclassification fraction

sm is equivalent to our FNrate. They report a final human error rate for FPs of

0.45% and for FNs of 0.64% which is based on a sample of around 50,000 mails.

[12] propose an approximation for the string kernel, making it more feasible

to run on large problems. As a sample task, they applied the modified kernel to

a spam filtering task: recognizing spam and ham mails solely from the sender

email address. The quoted accuracy of around 84% (based on two-fold cross-

validation on 3,902 samples from our corpus) is of course much worse than for

state-of-the-art spam filtering systems, but string kernels could in the medium

to long term become a feasible way to build better systems.

[7] present the SpamBayes system. They note that a SHratio of 1 works

best for training, which is what we found as well, and that incremental training

takes much longer to converge than batch-style training. They also note that

ham and spam collections should overlap in time as the system would otherwise

be inclined to distinguish them by the year token in the Date: header which

would yield very bad results on unseen data.

[17] proposes TUNE and TOE-style learning approaches, and reports re-

sults for several types of learning spamfilters (including CRM114 ) on publicly

available mail collections. His results are hampered by the non-representative

nature of the public collections, which may explain that we cannot replicate his

finding on the superiority of TUNE plus CRM114 here. However, he also notes

that training spam filters for several users via pooled mailboxes may work quite
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well, which we also found. He also proposes some behaviour-based features for

filtering spam.

[10] presents an extensive empirical evaluation of a memory-based spam-

filtering system. Their focus is spam filtering for mailing lists, and is thus dif-

ferent from our focus on filtering personal mail, but allows them to use available

public corpora for evaluation. They evaluate memory-based systems differing in

neighborhood size, feature set size and the size of the training corpus while we

are focussing on different training methodologies, modes of performance estima-

tion, and noise-level susceptibility. Their study is mainly empirical, but quite

comprehensive, and demonstrates that memory-based learning has its niche in

this research field.

[9] reports that a scheme for combining classifiers known as stacked gen-

eralization improves the performance of spam categorizers. While the use of

ensembles is similar in spirit to SpamAssassin, their ensemble is a set of classi-

fiers trained on bag-of-word representations of mails while SA-Train’s ensemble

(human-created rules and a Naive Bayes model) is expected to be more diverse

than their ensemble which differs only in the choice of learning algorithms at the

base level. Diversity is one of the key elements for successful ensemble learning.

However, the SA-Train ensemble is not able to improve on a simple Naive Bayes

learner in our setting which is somewhat similar to stacked generalization.

Our results disagree with [1] who found that current spam filters are not

suitable for deleting messages classified as spam. Assuming a human error rate

of 0.45% FP rate and 0.64% FN rate [2], at least one of the three systems tested

here performs comparably. Since minimizing FPs is far more important to most

users, clearly almost all of the tested systems are acceptable with properly set

treshold. They used Total Cost Ratio with a simple cost of 1000 for all false

negative errors while we reported FP and FN rate separately, and also showed
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the trade-off curve between FP and FN rate in a different form.

[16] has described an approach to use Genetic Algorithm techniques to op-

timize rule scores within SpamAssassin. Their approach differs from ours in

that they ignore the Naive Bayes model. For SpamAssassin 3.0.2., the devel-

opers have switched to a perceptron for determining useful default settings for

rule scores, so they are only a small step away from a linear support vector

machine – arguably the best algorithm for learning a linear discriminant model

in a classification setting, although it still needs some adaptation to generate

useful probability estimates.

[5] reports a comparative evaluation of several machine learning algorithms

on the text of messages and also a set of 9 heuristics. The reported improvement

due to the use of heuristics is modest. Our approach SA-Train uses 900+

heuristics from SpamAssassin but also fails to improve on a simpler Naive Bayes

learning system.

[3] compare boosted decision trees, SVM, Ripper and Rocchio with several

feature set variants on a small corpus of 3000 ham and spam mails. They con-

clude that SVM (with binary bag-of-word feature) and boosted decision trees

(with term-frequency weighted bag-of-word features) are the two best candi-

dates. They also find that using no stop-word list is preferrable. Their work

is similar to ours in that they also consider corpora from multiple users, and

in that they consider several learning systems in an empirical study. However,

their corpus is much smaller that ours, which limits the generality of their re-

sults. It would be interesting to repeat their experiments on our corpus in the

future, but we would be bound to expect that the performance falls short of the

state-of-the-art systems we have tested here.

[11] is one of the first papers dealing with bayesian approaches to spam filter-

ing. They are arguing for the importance of probabilistic classification, as well
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as the use of domain knowledge, to create state-of-the-art spam filters. Domain

knowledge in tuning features and learning algorithms for spam filtering systems

continues to be a significant factor even today. Their work is similar to ours in

that they try to evaluate their proposed system in a realistic setting, albeit on

a much smaller corpus. Many of their proposed domain-specific features have

in the meantime found their way into other systems such as SpamAssassin.

3 Evaluation measures

#N = a + b + c + d number of mails (1)

#Spams = a + b number of true spams (2)

#Hams = c + d number of true hams (3)

SHratio =
#Spams

#Hams
Spam/Ham ratio (4)

FPrate =
c

#Hams
FP rate, Ham Recall (5)

FNrate =
b

#Spams
FN rate, Spam Recall (6)

Err =
b + c

#N
=

= FNrate
1

1 + 1
SHratio

+ FPrate
1

1 + SHratio
Overall error rate (7)

Acc =
a + d

#N
= 1− Err Overall accuracy (8)

The effectiveness of spam filtering systems is usually measured in terms of

correct and wrong decisions. For simplicity, we restrict ourselves to two classes:

ham (– aka nonspam) and spam (+). For a given mailbox, the classification

of a spam filtering system can then be summarized in a contingency table,

see Table 1. a (True Positives) and d (True Negatives) are the number of

spam resp. ham mails which are correctly predicted by the system. c (False
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Positives) are errors where ham mails have been misclassified as spam, and b

(False Negatives) are errors where spam mails have been misclassified as ham.

There are a lot of measures concerning the evaluation of spam filtering sys-

tems, but most can be computed directly from the contingency table. Since

our collected mailboxes (except for #8) are not representative concerning the

ratio of spam to ham mails (SHratio), we chose two measures which do not

depend on this property: FPrate and FNrate. FPrate can be interpreted as

P (misclassified|true ham), i.e. the estimated probability that a true ham mail is

misclassified as spam. FNrate can be similarily interpreted as P (misclassified|true spam),

i.e. as the estimated probability that a true spam mail is misclassified as

ham. This is a simple way to measure system performance without reference to

SHratio as well as being immediately understandable and follows the standard

nomenclature in the field of spam filtering research. We note the equivalent

terms of ham recall for FPrate, and spam recall for FNrate, which follow the

usual definition of recall from Information Retrieval literature.

We always report separately FPrate and FNrate for each system and mailbox

– if a single error or accuracy value is needed for comparison to other studies, it

can be computed from these values by formulas (7) or (8) given the additional

value of SHratio.

4 Learning Systems

Here we will describe the three learning systems we investigated, along with

their settings and training methods. All of these systems base their classi-

fication decision on mail content including headers. The first two systems,

SA-Train and CRM114 are trained in a non-default way. For these, only the

errors of the current model are trained (Train-On-Error, TOE), beginning with

a reasonable default model. Furthermore, this training step is repeated until
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convergence (Train-Until-No-Errors, TUNE). We were motivated to use this ap-

proach because of excellent results in training our initial filters [14] and since

it has been reported as working very well for CRM114 by its author in [17],

on a set of publicly available mailbox collections. We have however found some

weaknesses related to this training approach, and therefore chose to investigate

simpler training approaches as well: The last system, SpamBayes, is trained in

the usual way – by training all mails from the training set exactly once in a

batch-style setting.

Both SA-Train and CRM114 can be viewed as improvements of a simple

Naive Bayes learner such as SpamBayes. SA-Train adds background knowledge

in the form of manually created rules; and CRM114 extends the description lan-

guage of NaiveBayes from single words to multi-word phrases with additional

modifications concerning probability estimates. The main focus of our evalua-

tion is to see whether these extension are successful in improving on SpamBayes.

Table 2 shows all considered learning systems at one glance.

We chose to use existing state-of-the-art spam filtering systems rather than

a set of current machine learning algorithms since the former offer much better

performance, having been refined for years on large mail collections. Earlier

unpublished experiments confirmed that creating a spam filtering system from

scratch is a complex task that should not be underestimated. Finally, using

state-of-the-art systems effectively precludes implementation bias.

4.1 SA-Train

SpamAssassin (www.spamassassin.org, DataMation 2005 Product of the Year

in the category Anti-Spam) is an open-source hybrid spam mail filter incorpo-

rating a state-of-the-art Naive Bayes learner (similar to SpamBayes) as well as

a set of human-created heuristic rules for spam recognition. SpamAssassin thus
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incorporates background knowledge on spam in the form of heuristic rules as

well as a Naive Bayes classification system. Contrary to a pure Naive Bayes

(NB) approach, this makes adapting the system harder, because it is not clear

when to adapt the scores, train the NB filter, or both. The NB filter is initially

disabled and activated only when 200 mails have been manually trained. Anec-

dotal evidence suggests that adapting the NB filter on its own is not sufficient

for reasonable performance - it is also necessary to adapt the scores to prevent

misclassification for several types of ham mails.

As the performance of SpamAssassin with default rule scores is poor even

for recent spam (see e.g. [13]), we have developed our own approach to training

SA, SA-Train. This method can either be viewed as an application of machine

learning techniques to the problem of optimal score assignment and NB learning

within SpamAssassin from an empirical viewpoint; or as a multi-view learning

approach (one view is the model of the NB learner; another is the score assign-

ment) within SpamAssassin. An open-source implementation of our training

method can be found at http://alex.seewald.at/spam.

We used version 2.63 of SpamAssassin. As we mentioned, SA is a hybrid

classifier with a set of 900+ heuristic rules, and a NB learner. Each heuristic

rule has a weight (score) attached. Rule matching is binary and based on perl

regular expression matching. The sum over the scores from all matching rules

is the full score for the mail. A user-definable threshold is used to determine

if a mail is to be classified as spam or ham. The NB learner is integrated into

the ruleset as a small set of pseudo-rules (e.g. BAYES 00 matches when bayes

spam probability is between 0% and 5%, BAYES 05 when the probability is

between 5% and 10% etc.), also with an attached user-definable score for each

pseudo-rule. A genetic algorithm has been used by the authors of SpamAssassin

to optimize the scores for all the rules and the NB pseudo-rules on a large corpus
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of spam and ham mails, and gives the initial score set, and is available within

SpamAssassin.

The initial NB model for SpamAssassin was taken from a model which has

been sporadically trained by the author prior to June 2004 on his own spam and

ham mails. An initialization was necessary since the NB model is not activated

unless it contains at least 200 mails. Autolearn, which automatically trains

some spam and ham mails, has been switched off. The auto whitelist, which

averages mail scores over several mails from the same sender, was also switched

off.

The training procedure was inspired by Train-Until-No-Errors (TUNE) which

was found to work best in [17]. TUNE is essentially a repetition of Train-On-

Error (TOE), which in each step trains the training set errors encountered for

the previous model, thus converging towards a model with low training set error.

Since initially no training set errors are known, we start with score learning. The

meta-data consists of the known mail classification (spam or ham, from train-

ing set) and the set of SA rules (including BAYES pseudo-rules) which match

the corresponding mail. Each rule is represented by a binary attribute with

value 0 for nonmatching and 1 for matching rules. For such a linear binary

classification task, a linear Support Vector Machine is the most appropriate

system. We used an open-source implementation of SVM based on the SMO

algorithm (weka.classifiers.functions.SMO, from the WEKA data mining suite,

www.cs.waikato.ac.nz/~ml/weka. Settings were -E 1 -N 2 -C 1) with a linear

kernel (without intercept, i.e. K(x, y) =<x.y>), and the complexity parameter

lambda was set to the default value of 1. No normalization of the input values

was performed, and no parameter optimization was done. The trained system

gives both the weights (score) for each rule as well as the threshold, yielding a

full classification model. After training, the training set errors are counted. A
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training set error of zero (i.e. a perfect model) yields an early exit as no further

TOE training can be done. A nondecreasing training set error after the first

three cycles also yields an early exit. This was added to prevent overfitting in

the presence of class noise.

The training set errors from the SVM model are afterwards trained incre-

mentally via the NB learner (i.e. via sa-learn), and the process is repeated from

SVM score learning onward. Again, we repeat until no training set errors are

found (which happens in 72.8% of the runs), or until the errors do not decrease

after the first three cycles. The first three cycles are intended to give the system

time for initial progress. During our early experiments, we found that the error

sometimes slightly increases in the second cycle, but still falls below the initial

value (from the first cycle) on the third or fourth cycle. At the end, a user prefs

setting file and a NB model for SA is available that can replace the default

settings and model. Note that the NB model is additive and will include all

unique mails that were misclassified in any cycle. Duplicate misclassified mails

are learned only once since sa-learn ignores requests to train a previously trained

mail again.

Earlier experiments with this kind of system are reported in [14]. Multiple

runs of V6 are most similar to our system, but we have found that spam collec-

tions by a single user are not sufficient. When evaluating the first trained models

on new users (i.e. one whose mails were not part of the training set) FN rates

up to 50% were reported – thus half of some user’s spam was unknown to the

pretrained system. This contradicts previously established notions about high

similarity between spams from multiple users within the same organization.

This family of systems has been extensively tested at our institute, and user

feedback has been very positive. It should also be noted that the FP rate was

always reported to be zero, so the small number of FPs we observed in most of
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our experiments don’t seem to be significant to the user. Training on pooled

(allTrain, see Section 7.2) mailboxes from multiple users improves on this – one

new test user was astonished and told us that the pooled model offered a much

lower FN rate than his own locally trained SpamAssassin model.

4.2 CRM114

For CRM114, we similarily used Train-Until-No-Errors (TUNE, [17]) modified

with an exit on nondecreasing errors after the first ten cycles or achievement

of a perfect model (i.e. without training set errors). TUNE repeats Train-

On-Error (TOE, see above) until a perfect model has been learned. This does

not always happen, so the exit condition is essential to prevent endless looping.

The exit condition is not checked in the first ten cycles to allow initial progress,

similar to simulated annealing. CRM114 uses far fewer mails for training in

TOE and therefore converges more slowly than SA-Train, which motivates the

higher number of cycles until the nondecreasing error condition is checked. The

training procedure is somewhat similar to SA-Train and also follows Yerazunis’s

recommendations (except for the early exit conditions which were added by us).

CRM114 is based on Sparse Binary Polynomial Hashing with a Bayesian

Markov Model. It is a generalization of NB filtering that tries to estimate

propabilities for phrases instead of single words, where longer phrases are given

more weight. Phrases can include wildcards which are placeholders that can

stand for any word. Details can be found on CRM114 ’s homepage, crm114.

sourceforge.net.

The mails were cut off at 1,000,000 size (i.e. only the first MB from each mail

was used for training) because the system exhibited erratic runtime behaviour

for larger mails. A cutoff at 10k as proposed by the author of CRM114 was

tested and found to reduce performance. Still, erratic runtime behaviour for the
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large noiselevel experiment forced us to cut off at 10,000 bytes for the noiselevel

and concept drift experiments.

According to experiments which are not shown, this change may modify the

FP rate of these experiments by factor 1.56±1.03, and the FN rate by 0.62±0.43

(averaged over mailboxes #1-#7). Note that the FP rate increases by almost

the same factor as the FN error is decreased which hints that the differences can

be explained as differences in the absolute values of the confidences (equivalent

to a different default threshold) rather than differences in the underlying model.

We would therefore still expect the FP/FN rate trade-off curves to be similar.

Additionally, three mails had to be manually removed from the training set

(only for the time-dependent evaluation of CRM-simple) after training these

mails took more than one hour per mail. Normally, training a mail takes a

few seconds. This probably makes the tested CRM version unsuitable for batch

operation unless appropriately time-limited.

4.3 SpamBayes

For SpamBayes (spambayes.org, [7]), we trained the full training set once.

The default thresholds of 0.9 for spam mails and 0.2 for ham mails classified a

large proportion of mails as unclear (i.e. neither ham nor spam, undecided). A

threshold of 0.5 is a sensible a priori choice for training sets with equal num-

ber of ham and spam mails (SHratio=1), and was therefore initially adopted.

SpamBayes is based on ideas by [4], and is a Naive Bayes learner. It is the

simplest system presented here.

Naive Bayes learning in this domain roughly works as follows: Split each

mail into a set of words via a tokenizer (for mail headers and body separate

tokenizers are usually used), and count how often each word appears in ham

mails resp. spam mails. These counts are then used to estimate P (wx|ham)
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and P (wx|spam) for all words wx (e.g. by frequency with Laplace correction

to prevent the occurrence of zero probabilites, or with more complex formulas).

By applying Bayes’ Rule, it is possible to estimate the probability of a new

mail being ham, i.e. by computing the product of all P (ham|wx) and the prior

probability P (ham), and also the product of all P (spam|wx) and the prior

probability P (spam), followed by renormalization of these two probabilities (i.e.

ensuring that they sum to 1). In SpamBayes, ham and spam probabilities are

combined via an approach using chi-squared probabilities which leads to more

robust estimates than simple renormalization.

Since the previously mentioned systems turned out to be quite similar to

each other, we have adapted the threshold to each mailbox (for byMBXTrain),

as well as one uniform threshold for the model trained by pooling data from

all mailboxes (allTrain). SpamBayes performs similar to the other systems

after this normalization while before it performed significantly better in FP

rate and significantly worse in FN rate. Among the eleven thresholds 0.0-1.0

(in steps of 0.1), we chose the one that minimized mean squared error versus

the mean of the average performance (over ten runs) from both SA-Train and

CRM114. The chosen threshold was 0.1 for allTrain; and 0.1, 0.4, 0.3, 0.4, 0.0,

0.0 and 0.3 for mailboxes #1-#7 and byMBXTrain. FP and FN rate MSE were

weighted equally. Using mean absolute deviation yields the same thresholds.

These thresholds were used for all experiments except where otherwise noted.

5 Mailbox Collections

The collection and verification of spam is time-consuming and error-prone – e.g.

error rates for manual verification of 0.45% (true ham), and 0.64% (true spam)

mails were reported by [2] for a SHratio of 4 and a corpus of 50,000 mails.

Because of the severity of our spam problem, we were motivated to collect
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seven distinct mailboxes consisting of ham and spam mails from colleagues at

our institute from June 2004 onwards.

We created mailboxes #1-#7 by merging mails recently predicted as spam

by SpamAssassin 2.63 (Default settings without bayesian model)2 with spams

collected and submitted by the users themselves over a short time span (2-

3 weeks), separately for each user. SpamAssassin markup and headers were

removed. The ham mails, on the other hand, were collected from past ham

mails within the user’s mail archive. We removed all mails which were sent by

the user himself since these are not incoming mails and therefore not appropriate

for training (except those also sent to the user via Cc or Bcc). The structure of

ham mails is likely to change less over time than spam mails (i.e. less concept

drift), so a combination of recent spam mails and stored ham mails seems a

plausible way to get to a working system fast. This is also the reason why

the SHratio of these mailboxes differs from what a typical user at our institute

experiences in his daily life (except #8, see below). Anecdotal evidence indicates

that this approach does indeed lead to well-performing models.

We have taken an effort to clean all the mailboxes, inspecting every training

set error of an earlier learning system to see whether the mail was assigned the

wrong category. An overview of the mailboxes, including date ranges for ham

and spam mails, is in Table 3. As you can see, the mailboxes are somewhat

spread out in time, and while models trained using this data work very well,

we cannot investigate concept drift issues here as the collection of these mails

does not accurately reflect a true second-by-second snapshot. On the other

hand, second-by-second snapshots of arriving mails would have to be collected

over several months by dozens of users to get as many ham mails as we have

collected here, which would have been infeasible for us.
2SA has been installed at our institute since 2002, has a small FP rate but an FN rate of

around 50%, so it is an obvious choice for bootstrapping large spam collections.
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To be able to investigate time-dependent performance, we have collected

another mailbox, #8, which is the set of all ham and spam mails received by

the author between 4th of October 2004 and 13th February 2005. These are

a realistic snapshot of the mails received at the institute. In this time period

the author held three lectures at the Medical University in Vienna, Austria.

Each mail was checked at least once. The SHratio of 16.4 accurately reflects the

proportion of spam by ham mails received by the author during this period.

We have taken the view of using a very broad spam and ham definition by

letting each user choose which mails to classify as spam and which to classify as

ham. A close inspection of the chosen mails shows that spam includes not only

Unsolicited Bulk Email, but also Phishing mails (which aim to collect credit-

card or personal information for fraud and identity theft), virus-infected mails,

Mail Delivery Errors for mails which originated elsewere but were sent with a

fake From address and so on. Our ham mails are similarily broad, including

newsletters, wanted advertisements, mails with large attachments – including

those without text and those with non-virus-infected3 executable attachments,

confirmation mails resultings from registering a webmail or mailing list service,

status messages from online merchants such as Amazon, Mail delivery error

messages concerned with previously sent legitimate mails, vacation auto-replies

sent as response to legitimate mails and so on. This makes the filtering task

sufficiently realistic to be of broad interest. No type of mail that users wanted

to receive has been explicitly excluded.

We have decided against using publicly available corpora of spam and ham

mails. Most current corpora are also not large enough to be of use. In some

cases, their spam definition is very narrow, and the ham definition is similar-

ily restricted in that no personal and professional mails are included due to

confidentiality issues. In that respect our mailboxes can be considered more
3Virus detection due to Symantec BrightMail 6, during experiments described in [13].
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representative than public collections.

6 Experimental Setup

For training all our learning systems, we have randomly drawn (without re-

placement) a roughly same-sized set of spam and ham mails from each mailbox.

The size was chosen so that in the smaller set (either ham or spam, depending

on mailbox), about 50% of the data remained for testing. The total training

size was thus always less than 50% – 25% on average. Compared to a tenfold

cross-validation where the training size is 90%, this is a more realistic challenge.

We were motivated to use a training size with SHratio=1 since most learning

systems are sensitive to non-uniform class distributions. A ratio of 1:1 for train-

ing is also proposed as preferred class distribution in the documentation of all

investigated systems. Our approach is equivalent to undersampling the larger

class, followed by one half of a two-fold cross-validation – provided the mails

removed during undersampling are added to the test set.

Two training sets were used: For byMBXTrain each mailbox was trained

separately and tested on the remaining mails. For allTrain the training sets

from all mailboxes were combined into a single training set of SHratio=1, and

all the remaining ham and spam mails were used for testing. The test results

are reported for each user separately, except where otherwise noted.

Training and testing was repeated ten times with different random order-

ings of the mailboxes’ mails, unless otherwise noted. Average and standard

deviations of FP and FN rates per mailbox are reported.

All of our learning systems can be made to output confidence values for each

test mail. The default threshold applied to these confidence values determines

the performance of the system. A threshold-independent way of showing the

performance of the system at all thresholds in one glance is a FP/FN rate
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trade-off curve. This is essentially a scatter plot of FPrate vs. FNrate, where

each threshold determines a different data point. For better visualization, 2000

threshold values were uniformly sampled from the range of confidence values

in the data, and neighboring points were connected, yielding a curve. The FN

rate at given acceptable FP rate can thus be determined from the curve. This

visualization is similar but not identical to a ROC curve, which would use TP

instead of FN and no logarithmic scales. However, the use of a logarithmic

scale is essential as otherwise the systems could not be distinguished. TP with

an logarithmic scale would have given less weight to important differentiations

(e.g. between 99.9% and 99.99% TP rate which corresponds to 0.1% and 0.01%

FP rate) and was therefore replaced by FPrate. The same argument holds for

absolute TP (i.e. a).

7 Results

7.1 byMBXTrain

Here we report the results of the evaluation where each mailbox was trained

and tested separately (byMBXTrain). The motivation was to see which of two

factors – learning system and mailbox – have a higher influence on system

performance. The hypothesis was that the mailbox has a higher influence.

As we can see in Figure 1 and Table 4, all three systems perform somewhat

similar. Only a few significant differences (i.e. non-overlapping errorbars) can be

found for systems trained on the same mailbox. The average performance is also

quite similar, except for SpamBayes which has only half the FP rate but double

the FN rate. This is likely to be an artefact of the coarsely chosen tresholds for

normalization versus the other two systems, and does not signify a superiority

of SpamBayes. The differences between mailboxes are much larger than the
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differences between the three learning systems, and the standard deviation over

the runs (shown as error bars in Figure 1) is also quite high, which explains why

there are few significant differences between systems on the same mailbox. The

latter may reflect the small amount of training data that is available for each

run, especially for the smaller mailboxes.

Concluding, in this experiment the differences between the mailboxes are

much larger than the differences between the learning system, so there are both

easy and hard mailboxes for this task. The differences between the systems,

however, is small: only in few cases is this difference significant. The initial

hypothesis could be confirmed, which indicates that studies on a single mailbox

may not be sufficient.

7.2 allTrain

Here, we evaluated the performance of a combined system which was trained on

pooled data from all mailboxes (allTrain). The motivation was to see which of

two factors – learning system and mailbox – have a higher influence on system

performance. The hypothesis was that the mailbox has a higher influence.

Pooling data from all mailboxes to train a single model (allTrain, Figure 2,

Table 5) reduces FP and FN rate and also reduces the variation over runs (ex-

cept for mailbox #5). Although it is generally believed that models which are

trained for each user separately yield the best results, these results demonstrate

conclusively that combining training data is beneficial for at least a small num-

ber of users. Anecdotal evidence suggests that a pooled model also offers better

performance when classifying mails for a previously unknown user (similar FP

rate and better FN rate was usually observed) than a model trained for an ar-

bitrary user. This can be attributed to the greater diversity of training inputs

which improves generalization performance.
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According to anecdotal evidence, SA-Train systems trained on pooled data

seem to deteriorate slightly faster over time than per-user models, for some

users. This does not seem to be the case for SpamBayes systems trained on

pooled data (see Section 8.2).

Pooling data also enables us to determine smaller FP rates (down to 10−4)

than would have been possible with utilizing per-mailbox training and testing.

Additionally, a larger sample of diverse mailboxes makes it more likely that our

results hold generally, rather than being an artefact of a single user’s mailbox.

Concluding, the mailbox is still a factor in system performance, although the

mailboxes now give more similar results as for byMBXTrain, and the differences

between learning systems have become less significant. This suggests that the

systems are able to learn a more balanced model from pooled data. In neither

allTrain nor byMBXTrain could an advantage for the extensions of Naive Bayes

learning (SA-Train and CRM114 ) be found.

7.3 Class Noise Level

Noise level susceptibility is an important property of spam filtering systems as

it determines the effort needed to clean the mailbox prior to training. A low

noise level susceptibility is a desired property of filtering systems. Here, we have

set out to determine the noise level susceptibility of our three learning systems.

The noise level experiments were conducted by permuting the training sets

from each mailbox separately. Since each training set contains roughly the same

number of ham and spam mails, we have chosen to invert the classification for

the same number of ham and spam mails so that the total number of mails with

wrong classification equals the desired noise level (half are spams with assigned

ham label, and half are hams with assigned spam label). Therefore we focus on

class noise where additionally the errors are equally distributed between ham
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and spam mails. Again, each mailbox and noise level experiment has been run

ten times, and the average and standard deviation over these runs are shown.

Figure 3 and 4 show the results. In most cases, increasing the noise level also

increases the FP rate, often in at least linear fashion. The same effect on FN

rate is also present but less pronounced. In most cases SpamBayes breaks this

trend and is even at first glance much less susceptible to noise. Since SpamBayes

is also the only system that does not use TUNE-like training procedures and the

pattern is otherwise similar between CRM114 and SA-Train (two very different

systems), this is suggestive of a link between TUNE-like training and increased

susceptibility to class noise.

This is supported by the data: the number of cycles for TUNE increases

monotonically for all mailboxes in relation to increasing noise level (on aver-

age by 62% for SA-Train, and by 16% for CRM114, both from 0.0% to 2.4%

noise (data not shown)). This indicates that noisier data consistently needs

more cycles to attain convergence, and is therefore more susceptible to worse

performance due to overfitting the noisy training data. TUNE training repeats

the training of mails which were misclassified by the system several times. In

case the learning system works reasonably well, mails with noisy classification

will tend to be misclassified disproportionately often, and thus often retrained.

This biases the model and leads to worse performance. It is still surprising that

the early exit criterions of SA-Train and CRM114, and the fact that misclassi-

fied mails are only trained once in SA-Train, did not help either SA-Train or

CRM114 to attain the same robustness as SpamBayes.

Anecdotal evidence also suggests that training set errors of at least SA-

Train are indeed good indicators for incorrectly labeled mails, and consequently

training set errors encountered while training preliminary mail collections were

usually improperly labeled.
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Concluding, the noise level susceptibility is high for systems with TUNE-like

training (SA-Train and CRM114 ) and low for systems with normal training

(SpamBayes). TUNE-like training approaches seem to be far more susceptible

to class noise, which can be explained by the nature of TUNE training, as well as

being confirmed by the number of training cycles which increase monotonically

in lockstep with increasing noise level.

7.4 FP/FN rate Trade-Off curves

Up to now, we have compared the overall performance of each system at a

single point, and found few significant differences between systems on the same

mailbox. However, it is clear that FP rate can be traded off versus FN rate

to some extent. This is most obvious for systems which already incorporate

a threshold parameter. E.g. a threshold of 0.5 for SpamBayes gives 0.07%

FP rate and 1.9% FN rate – roughly a tenth of FP rate and three times FN

rate versus a threshold of 0.1. All the systems tested can be made to output

confidence values that may be tresholded at different values rather than the

default. A useful way to visualize performance at different thresholds is to

plot FP rate versus FN rate. The FN rate at given acceptable FP rate can

be determined from this plot. This approach allows us to observe differences

between the systems which are not visible by comparing the performance at

default thresholds. Our hypothesis here was that, again, there would be no

differences between the learning systems.

To have sufficient data for testing, we only show results for the pooled train-

ing sets (allTrain), obtained by storing the confidence for the classification of

each test mail (only the first run of allTrain). Since we already know that the

mailbox is a major factor in system performance, pooling the test data essen-

tially abstracts from this factor and enables us to investigate results that are
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independent of specific mailboxes. From Section 7.2 we already know that the

performance of the allTrain model is quite similar over the mailboxes, so the

combination should not increase the variance too much. We are aware that the

variance of these estimates may be high because only a single run of allTrain is

used, but there is no simple way to combine the estimates from different runs

of allTrain as in each run different sets of mails are tested. A cross-validation is

also not possible because of the 1:1 sampling approach which breaks the essen-

tial symmetry of CV. However, we believe that the large test set ensures that

the differences observed here would also be apparent with a different random

ordering of the input data. We will henceforth call this kind of visualization a

FP/FN rate trade-off curve, or shortly trade-off curve.

Figure 5 shows the trade-off curve for the three tested systems. Each point

on the curve corresponds to a FP (X axis) and FN (Y axis) rate that can be

achieved by choosing a specific threshold. As can be seen, at the estimated

human error rate of around 0.3-1% [2] SA-Train, CRM114 and SpamBayes

perform very similar. For smaller FP rates, SpamBayes and SA-Train perform

similar while the FN rate for CRM114 increases significantly. FP rates of smaller

than around 10−4 are not achievable with SpamBayes since many mails have a

score of exactly 0 which prevents further trade-off of FP against FN rate in this

area.

[2] found that different internal thresholds explains most of the differences

between spam filtering systems. Contrary to his findings,we already observed

very little differences at default thresholds in the previous sections (after Spam-

Bayes normalization), but the trade-off curve has enabled us to find a previously

not noted difference: At one glance, we see that CRM114 is only competitive

to the other two systems for a small range of thresholds including the default

threshold of 0 for that learner. Our initial hypothesis – that we would again
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find no differences between systems – has been disproved. On the contrary, we

found that one of the investigated extensions to Naive Bayes, CRM114, actually

performs worse than its ancestor.

7.4.1 Training procedures

The TUNE (Train-Until-No-Errors) training procedures we used up to now for

SA-Train and CRM114 are rather costly. It remains to be investigated whether

the same results could be obtained with less training. Also, in the light of higher

noise-level susceptibility of TUNE training, we might end up with a faster and

better model. So we investigated two ways to reduce the computational effort

of TUNE as well as make it less susceptible to overfitting. Additionally, since

our main motivation was to check whether the learners SA-Train and CRM114

have improved on SpamBayes, we needed to make sure that the similar results

of the three systems were not due to the difference in training methodology.

TUNE training involves repeated training of training set errors until con-

vergence. On simplification is therefore learning the training set errors only

once which was already named Train-On-Error, or TOE. This is equivalent to a

single cycle of TUNE. The order of the mails in the training set is arbitrary but

fixed. TOE is somewhat related to incremental training of spam filters (where

the mails would be in chronological order) and thus to a widespread method

to train spamfilters incrementally. For SA-Train, the SVM weights need to be

learned twice: at the beginning to get the full model in order to determine

the training set errors, and after NB learning to get a weight vector for the

final model. TOE alone should be around an order of magnitude faster as the

maximum number of cycles for TUNE was set to 15.

The other was learning all mails and not only the training set errors, which

we called simple. For SA-Train, the full training set was learned via NaiveBayes,

and afterwards SMO was applied. In that case, the initial NB model was not
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needed as for all mailboxes more than 200 training mails were available. It

should be noted that this simpler system was actually at least two orders of

magnitude slower for CRM114, since in that case training is much more costly

than testing, and TOE reduced the number of mails to be trained by two orders

of magnitude. For SA-Train, simple was only slightly slower than TOE.

Figure 6 shows the influence of the training method on the trade-off curve for

CRM114 and SA-Train. As can be seen, the influence on CRM114 is large, with

the curve almost steadily improving from simple to TOE to TUNE. Surprisingly,

the effect on SA-Train is quite small (except for high FP rates greater than 10%),

so the simple training method seems to be sufficient for SA-Train.

Concluding, our results disprove the hypothesis that SA-Train and CRM114

using simpler training methods would outperform SpamBayes, since in all cases

the performance when trained with simpler methods did not improve signif-

icantly. The results also support [17] finding that TUNE and TOE improve

performance of CRM114. However, this is not the case for SA-Train so TUNE

and TOE seem to be less useful as a general technique. In the light of higher

noise-level susceptibility, care should be taken when applying the TUNE train-

ing procedure, and comparison to simpler training methods is essential.

8 Concept Drift

Up to now, we have mainly ignored concept drift, i.e. the fact that the true

model generating ham and spam mails changes over time. We have argued that

the mail collection ensures datasets with little concept drift (except mailbox

#8). We also note that the error for SpamBayes on the representative mailbox

#8 (averaged over first two weeks: FPrate=0.532%, FNrate=0.956%) is within

the 99% confidence interval of the earlier time-independent estimate (see Ta-

ble 5, Avg. ± 2*stDev). This is also the case for the FN rate of CRM114 and

29



SA-Train (both FP and FN rate), but not for the FP rate of CRM114 which is

one order of magnitude lower versus mailbox #8. We may tentatively conclude

that time-invariant error estimates from our mailboxes #1-#7 are usually valid

on new mails – even from an unseen but related mailbox – for at least a limited

time period.

Concept drift must be analyzed over longer timespans. E.g. in [13] we found

that performance estimates of current ready-to-use systems are only valid with

reasonably recent mails, and that the FN rate increases sharply for older mails –

which reflects the major effort of the system’s developers to account for current

spam mails at the expense of historical spam mails. This effort can also be seen

in the enormous bandwidth requirements: for Symantec BrightMail, about 700

megabytes of updates were received weekly during our three-week experiments

in [13]. The usual tendency for learning systems is just the opposite: Spam

classification tends to get harder in time, once the model has been trained and

remains fixed.

We used mailbox #8 (see Table 3) for these experiments. While #8 on its

own is not large enough for training because it contains too few ham mails (only

1387 vs. 27163 mails for the full training set used here – see below), it is suf-

ficient to test two aspects of our trained systems: One, we can determine how

well the system generalizes to an unknown mailbox as no mails from the user

corresponding to #8 were used during training (except for the initial model of

SA-Train). Two, we can determine how fast the trained systems deteriorate

over time. Additionally, we can evaluate continuous learning approaches by

simulating different ways to learn the incoming ham and spam mails in chrono-

logical order, and compute FP and FN rate for the continuous learning system

as it evolves over time.

One disadvantage of this approach is that we have to check two different
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effects at once. However, as we already noted, the time ranges of spam and ham

mails within each of our collected mailboxes are too different to be used for that

purpose. Pooled mailboxes (allTrain) cannot be used, since the earliest ham

mails from the pooled mailbox would come mainly from one or two users. An

additional complication is the 1:1 sampling, which would force us to split ham

and spam mails each into a different number of folds. This would complicate

training, testing and combining the results. We note that our intention was to

create a trained model that generalizes well to unknown users, and therefore

the more challenging analysis of two meshed effects is in our interest.

#8 is both temporally separated as well as collected from a different user

as #1-#7. Each learning systems was trained on mailboxes #1 to #7 except

the ham mails from #1 which were removed to obtain a SHratio=0.87 and thus

reasonably near 1.

8.1 Deterioration over time

Here we focus on the deterioration of FP and FN rate over time for each learned

model. This is an important property of learned spam-filtering systems, as it

determines the effort that is needed for batch or continous retraining to sustain

a desired level of filtering performance indefinitely.

While we could not find any advantage for the more complex learners until

now, it could be that SA-Train and/or CRM114 offer more stable performance

over time and thus deteriorate less even though the absolute performance and

trade-off curves are remarkably similar to a large extent.

8.1.1 Weekly FP/FN rate

Deterioration can be measured by weekly FP/FN rate, but also by comparing

the FP/FN rate trade-off curve from the first half and the second half of the
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timespan corresponding to #8. We will compute and contrast both measures

as well as comparing them to the FP/FN rate trade-off curves from allTrain

evaluation.

Figure 7 shows the FP and FN rates over time for each model. The FP rate

shows no degradation, but fluctuates quite strongly. By FP rate, SA-Train is

best, followed by SpamBayes and CRM114. As can be seen, SpamBayes shows

the smallest FN rate degradation over time. This indicates that SpamBayes

has learned a model of spam which degrades very slowly. SA-Train performs

very well in FP rate and quite good in FN rate initially, but the latter degrades

rapidly. Retraining at around week 14 would clearly be necessary here. CRM114

performs badly in FP rate but does not degrade, and its FN rate starts low but

degrades faster than the one by SA-Train. This hints that the default treshold

might not be appropriate at least for CRM114, so we continued the analysis

with trade-off curves.

8.1.2 FP/FN rate trade-off curves

We computed the curves over the first ten weeks, and over the remaining nine

weeks. Additionally, we added the curves from Section 7.4 to allow a comparison

to the earlier time-independent estimate. Note that we would expect the new

estimates to perform worse, as no mails from the user corresponding to #8 were

part of the training set (except for SA-Train, where a small set of earlier mails

from the same user as #8 were used for the initial Naive Bayes model). This is

the cost of generalizing to previously unseen mailboxes.

Figure 8 shows the trade-off curves for our three learning systems. The

good agreement between the allTrain curve and the curves estimated from #8

for SA-Train is most likely due to the initial Naive Bayes model of SA-Train

which was partially based on user #8’s mails. For the other models, the agree-

ment is less good. For all systems but SpamBayes, the curve over weeks 10-18
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performs worse than the one from weeks 0-9 which is to be expected if the

techniques used by spammers succeed in defeating spam filter systems. Most

surprising is that for SpamBayes, additionally to showing little effect of time on

the FN rate, the FP/FN rate trade-off curve actually improves over time, hint-

ing that the learned model is exceptionally resistant to changes in spam mail

distribution. Since SpamBayes is also the simplest system we have tested, this

is strongly suggestive of overfitting in the two other systems. We note that both

for SA-Train and SpamBayes, the curve estimated on the time-dependent data

is shaped differently than the one from allTrain: when we compare the area

between 0.001 and 0.1 FPrate, it is convex rather than concave. For CRM114,

the same curve appears but is shifted along the FP rate axis which corresponds

to a geometric increase in FP rate that is also observed in the time-dependent

estimate of classification performance (see Section 8, first paragraph).

8.1.3 Training procedures

As would be expected from the results in section 7.4.1, the training procedure

has little influence on SA-Train, and the simplest training methodology already

works reasonably well. However, the trade-off curve of training methodology

simple, which is the only one that does not depend on the initial Naive Bayes

model which contains earlier mails from the same user as #8, is noticeably

worse, which confirms our earlier suspicion that SA-Train’s good agreement is

due to this fact. The other curves are very similar over the different training

methodologies. This confirms that training methodology has less influence on

SA-Train.

For CRM114, the shape of the FP/FN rate trade-off curves for the three

training methodologies are similar to those curves computed via allTrain, pro-

vided we again abstract from the worse performance (i.e. the shift along the FP

rate axis). The classification performance at the default threshold for training
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procedures TUNE and TOE is again similar, but simple yields a FN rate rate

in excess of 80% and a very low FP rate rate. This indicates that the default

threshold may be inappropriate in that case, or that for CRM114-simple, the

training data needs to be very near a SHratio of 1 (the SHratio for the training

data in this subsection was 0.87). Data is this section is not shown.

8.1.4 Conclusion

Concluding, the results of time-independent evaluation still apply to time-dependent

evaluation for at least an initial time period. The trade-off curves are shaped

differently (convex vs. concave), which is not due to the expected deterioration

in applying the model to an unknown user. For SA-Train, the initial model

included mails from the user of #8, and the curve was correspondingly more

similar but still convex. We speculate that the concept drift is biasing the curve

towards higher convexity in time rather than shifting it, but our data is insuffi-

cient to show this clearly. CRM114 appears to react differently: it shows a clear

horizontal shift for allTrain to mailbox #8 (i.e. evaluation on an unseen user’s

mailbox), and a vertical shift for the first nine weeks to the last ten weeks. In

each case, SpamBayes – rather than the more complex systems – deteriorates

less over time. Thus, again we find no advantage in using the more complex

systems.

8.2 Continuous (incremental) training

As an encore we tested several continuous training methodologies. Since both

SA-Train and CRM114 fail to improve on SpamBayes, we only tested how the

SpamBayes learning model can be incrementally updated. This is an alternative

to retraining every few months, i.e. the batch-style training which has been used

throughout this paper. While batch-style training combined with our approach
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to mail collection is very useful to create an initial model, incremental learning

is useful to make spam filtering updates more timely and less costly. Instead

of batch-training a new model every few months, continuous learning trains

misclassified mails incrementally as they appear. This is reminiscent of TOE

training, and also a common approach to train spam filters incrementally.

We have chosen to evaluate only the best tested system, SpamBayes, on

independent test data from mailbox #8. As can be seen from Table 3, #8 is

both temporally separated as well as collected from a different user as #1-#7.

SpamBayes was initially trained on mailboxes #1 to #7 except the ham mails

from #1 which were removed to obtain a SHratio=0.87. An evaluation of the

two other systems was deemed to be unnecessary: SA-Train is expected to

perform very similar to SpamBayes, and CRM114 is not expected to perform

better than SpamBayes either and is furthermore only competitive for a small

range of thresholds.

This focus on a single system allows us to investigate continuous learning

in detail: Complementing the batch-style training and test which we have used

up until now, we shall now compare several variants of Train-On-Error to see

whether such a continuous training approach biases FP and/or FN rate. We

will investigate three such variants, or settings.

• AlwaysTOE trains each FP and FN error instantly after the misclassifi-

cation appears. This is optimal from point-of-view of the learner, but is

rather costly since all mails classified as spam have to be checked instantly.

• NoHamTOE trains only the FN errors. This reflects the behaviour of

users which do not look through their spam folder at all and so miss all

false positives – a common behaviour for users of spam filtering systems,

and also a desirable behaviour from an application point of view since it

does not involve continuously checking the spam filter.
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• None does not train any errors at all. This is even more desirable than

NoHamTOE, but may work only for a limited period.

In all three cases, the mails from #8 are presented in the order in which they

were initially received. The FP and FN rates are averaged over full weeks to

prevent artefacts due to weekday-dependencies. We will focus on the changes in

FP and FN rate due to these different continuous learning settings to see what

effect they have in practice.

Figure 9 shows the results. As would be expected, AlwaysTOE has the

lowest FN and FP rate overall. However, even None manages to keep a FN

rate of smaller than 2% over the full 18 weeks while the FP rate fluctuates

wildly around the average of 2%. Note that NoHamTOE has only a small

influence on the FP rate which is over most stretches exactly the same as for

None while it improves the FN rate almost as much as AlwaysTOE, so it seems

that NoHamTOE combines the best of both approaches. The high FP rate is

rather unsatisfactory, and so we repeated the experiment with a threshold of

0.5 for SpamBayes – a reasonable setting for a training file with approximately

equal numbers of ham and spam mails – which strongly reduces FP rate at the

cost of FN rate.

Figure 10 shows the results. Now, all three continuous training settings have

exactly the same FP rate. Note that only two ham mails were misclassified in

week 9 by all systems, so over the time period there seems to be no deterioration

of ham error – with or without training, and even when training only spam

errors, of which there are a few hundred. This is an excellent result.

The FN rate, however, deteriorates fast for the None model, but stays about

constant at around 2-3% for AlwaysTOE. NoHamTOE almost exactly matches

AlwaysTOE and thus overlaps in the figure. In short, NoHamTOE seems to be

the best continuous training setting provdided the learner achieves a sufficiently
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small FP rate. A high FP rate (as in the previous example with threshold=0.1)

will deteriorate much faster and necessitates looking at each predicted spam

mail. We propose utilizing other approaches to estimate FP rate regularily to

prevent an deterioration over longer periods.

8.3 Other learning methods

[2] is one of the most comprehensive empirical studies on spam-filtering sys-

tems to date. They cite six spam-filtering systems: SpamAssassin, CRM114,

SpamBayes, BogoFilter, DSPAM and SpamProbe. Of the three systems we

have not tested here, BogoFilter and SpamProbe are Bayesian filters inspired

by [4], which has also inspired SpamBayes. DSPAM and CRM114 are found

to perform substantially inferior to the other filters (when training and clas-

sifying mails in sequence). The latter is compatible with our findings. They

conclude that The potential contribution of more sophisticated machine learn-

ing techniques to real spam filtering is as-of-yet unresolved, which is also our

opinion: Overall, there are some promising papers (e.g. [10],[3],[12]) but none

of them has yet been translated into a state-of-the-art spam filtering system

of non-Bayesian origin. Even commercial systems fail to beat Naive Bayesian

learners such as SpamBayes, see [13].

9 Conclusion

We have evaluated two extensions of Naive Bayes learning (SA-Train, CRM114 )

as well as a simple Naive Bayes learner (SpamBayes), on a set of around 65,000

ham and spam mails collected from seven users, plus a set of ham and spam

mails from an eighth user. We draw the following conclusions from our ex-

periments. Conclusions 1-3 are of a practical nature. They indicate what we

have learned concerning how to train well-performing spam filters with minimal
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effort. Conclusions 4-6 are related to the TUNE training procedure (due to

[17]). Conclusion 7 states specific weaknesses of both SA-Train and CRM114,

and Conclusion 8 states specific weaknesses of CRM114 which we have found

during our investigations.

1. Our approach to mailbox collection – combining a set of recent spam mails

with historical ham mails – allows fast creation of large mailboxes for spam

filter training. These seem to contain very little concept drift and are very

useful for training any learning spamfilter among those investigated with

small differences in performance (at default thresholds) and the trained

models are stable over several months. By Ockham’s Razor, the simplest

system, SpamBayes, should be preferred.

2. For high ratios of spam to ham mails, representative mailboxes will have a

very biased class distribution. Our approach of 1:1 sampling has proven to

yield very good spam filters even when the true class distribution is very

biased (e.g. 1:16.4 was observed by the author for #8). Our approach to

mail collection (see above) allows control over training set SHratio and a

value of 1 should therefore be aimed for.

3. Pooling multiple mailboxes for training reduces the variance of estimates

and does not reduce performance significantly. In some cases, the per-

formance of the combined system is even better than that of a model

trained for a specific user. The generalization to unknown users may also

be improved through higher diversity of the training data.

4. The TUNE training approach works well on CRM114 for which it was

developed and improves classification performance as well as the shape of

the FP/FN curve.

5. For SA-Train, TUNE training was found to have only marginal influence
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on classification performance and the shape of the FP/FN curve while

strongly increasing runtime. Thus, TUNE should not be expected to gen-

erally improve performance.

6. TUNE training for both CRM114 and SA-Train increases the susceptibil-

ity to class noise in training data, which is to be expected as TUNE trains

each erroneously classified mail repeatedly. SpamBayes, which does not

use TUNE training, shows no such degradation. The better performance

of CRM114, and the similar performance of SA-Train, is thus offset by

the higher error rates in the presence of noise. This pattern is apparent

on almost all mailboxes.

7. Both SA-Train and CRM114 show a marked deterioration in spam error

rate over time. SpamBayes does not. In this case, the TUNE training

procedure is not responsible for the worse performance of SA-Train and

CRM114. We suspect that the higher number of parameters available to

both systems leads to overfitting and thus to a less stable model which is

compromised faster. The deterioration of SpamBayes may only be clearly

apparent over a longer period than the 18 weeks which we have studied.

8. When comparing classification performance, all three tested systems per-

form equally well (after normalization of SpamBayes – before normal-

ization SpamBayes performs uniformly better in FP rate and uniformly

worse in FN rate). However, a look at the performance dependence on the

threshold level shows that CRM114 is only competitive to SA-Train for a

small range of thresholds which include the default one. The SpamBayes

curve is similar to the SA-Train curve but is cut off at a FP rate of 10−4.

All these observations are also valid when SA-Train is trained in a more

simple way similar to SpamBayes (i.e. without TUNE or TOE).

39



Overall, the addition of background knowledge to a Naive Bayes learner, SA-

Train, as well as the extended description language of CRM114, has failed to

improve Naive Bayes learning significantly, even with refined training methods

such as TUNE and TOE. Rather, the perceived similarity to the Naive Bayes

learner SpamBayes is highly suggestive and indicates that the NB learner is

responsible for almost all of the classification performance of SA-Train. For

CRM114, the extended description language (phrases instead of words) has had

negative impact on performance for a large range of thresholds. The much

higher deterioration over time of both systems vs. SpamBayes may be due to

overfitting, since a much higher number of parameters need to be fitted from

the same data (both the NB model’s probabilities and the rule scores; resp.

probabilities for all phrases up to a certain length rather than words).

The similarity between the three tested systems, taken together with the

findings of [2] who found very similar performance on a larger set of spam fil-

tering systems, indicate that content-based learning approaches may well have

reached a ceiling. More complex approaches fare worse than simple approaches

in noise-level susceptibility and deterioration over time while their performance

in a time-independent evaluation is remarkably similar. Even commercial sys-

tems that process several million EMails per month such as Symantec Bright-

Mail do not offer a better performance ([13]).

Additional improvement may be expected from other sources of information

apart from content, e.g. behaviour-based filtering approaches which take the

behaviour of the sending mail server into account. Combining these and other

information sources into a single learning system might improve the filtering

performance beyond the current ceiling. However, extended corpora need to be

created for this purpose which is likely to be another major effort.
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11 Tables

Table 1: Summarization of classification decisions as contingency table.
Predicted Class

spam (+) ham (–)
True spam (+) a b
Class ham (–) c d
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Table 2: Learning systems by learning algorithm and feature set.
System Algorithm Feature set
SA-Train SMO, Naive Bayes bag-of-words (NB), rule outputs (SMO)
CRM114 SPBPH w/ Bayesian Markov Model implicit bag-of-phrases (with wildcards)
SpamBayes Naive Bayes bag-of-words
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Table 3: Mailbox corpora used for evaluation.
mbox number of mails SHratio received during
no. Ham Spam Ham Spam
#1 15248 3319 0.21 12/88-07/04 01/97-07/04
#2 8982 10605 1.18 01/02-09/04 02/02-09/04
#3 3608 568 0.15 09/97-06/04 06/04-06/04
#4 2167 1123 0.51 04/96-06/04 06/04-06/04
#5 1589 3083 1.94 07/02-07/04 02/03-07/04
#6 7539 1838 0.24 09/99-07/04 05/04-07/04
#7 3278 3229 0.98 06/01-06/04 06/04-06/04
#8 1387 22795 16.43 10/04-02/05 10/04-02/05

4

4SHratio: Ratio of spam to ham mails. Dates were reconstructed from Received: Headers
and may not be accurate for spam mails – Spam mails were collected over short time spans
(at most 2-3 weeks), and the date ranges do not always reflect this correctly.
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Table 4: Full results of learning systems, training method byMBXTrain.
mbox SA-Train CRM114 SpamBayes
no. FPrate FNrate FPrate FNrate FPrate FNrate

#1 0.720 0.796 0.768 0.766 0.538 3.551
#2 0.187 0.317 0.528 0.251 0.343 0.185
#3 1.854 2.047 0.850 0.706 0.012 1.270
#4 0.690 1.195 0.536 0.785 0.240 0.553
#5 1.538 1.791 1.563 2.047 0.643 6.235
#6 0.746 1.916 0.840 1.219 0.817 1.111
#7 0.330 0.799 0.586 0.899 0.146 0.793

Avg. 0.866 1.266 0.810 0.953 0.391 1.957
StDev. 0.611 0.665 0.360 0.561 0.287 2.179

5

5To emphasize differences all numbers are in percent (i.e. have been multiplied by 100).
E.g. 0.178 stands for 0.00178, or around 1

561
.
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Table 5: Full results of learning systems, training method allTrain.
mbox SA-Train CRM114 SpamBayes
no. FPrate FNrate FPrate FNrate FPrate FNrate

#1 0.701 0.627 0.507 0.663 0.950 0.531
#2 0.154 0.275 0.198 0.602 0.163 0.238
#3 0.278 1.023 0.185 0.282 0.000 0.635
#4 0.308 0.892 0.129 0.393 0.111 0.464
#5 1.374 1.116 1.827 0.987 1.386 0.965
#6 0.964 1.002 0.648 0.566 0.764 0.730
#7 0.269 0.731 0.378 1.122 0.110 0.781

Avg. 0.578 0.810 0.553 0.659 0.498 0.621
StDev. 0.454 0.291 0.593 0.302 0.536 0.236

6

6To emphasize differences all numbers are in percent (i.e. have been multiplied by 100).
E.g. 0.178 stands for 0.00178, or around 1

561
.
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Figure 1: This figure shows FPrate (on the left) and FNrate (on the right) for
mailboxes #1-#7, and the learning systems. Each model was trained and tested
separately on each mailbox. Error bars are the standard deviation of test set
error over ten runs. 0.025 = 2.5%.
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Figure 2: This figure shows FPrate (on the left) and FNrate (on the right)
for mailboxes #1-#7, and the learning systems. Each model was trained on
pooled data from all mailboxes. Testing was done on remaining mails from each
mailbox that were not used for training. Error bars are the standard deviation
of test set error over ten runs. 0.025 = 2.5%.
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Figure 3: This figure shows FPrate (left) and FNrate (right) at different noise-
levels, for mailboxes #1 to #4 (top-to-bottom).
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Figure 4: This figure shows FPrate (left) and FNrate (right) at different noise-
levels, for mailboxes #5 to #7 (top-to-bottom).
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and SA-Train (right), for the three training methods TUNE, TOE and simple.

56



 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0  2  4  6  8  10  12  14  16  18

FP
ra

te

Week no.

CRM114
SA-Train

SpamBayes

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0  2  4  6  8  10  12  14  16  18

FN
ra

te

Week no.

CRM114
SA-Train

SpamBayes

Figure 7: This figure shows FP and FN rates (left: FPrate, right: FNrate) on
mailbox #8. Week numbers are measured from the start of #8, only full weeks
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Figure 8: This figure shows FP/FN rate trade-off curves for SA-Train, CRM114
and SpamBayes. The allTrain curves are from section 7.4; the two others curves
are taken from weeks 0-9 resp. 10-18 of #8.

58



 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0  2  4  6  8  10  12  14  16  18

FP
ra

te

Week no.

AlwaysTOE
NoHamTOE

None

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0  2  4  6  8  10  12  14  16  18

FN
ra

te

Week no.

AlwaysTOE
NoHamTOE

None

Figure 9: This figure shows FP rate (left) and FN rate (right) for mailbox #8,
averaged over each week, for the three continuous training settings.
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Figure 10: This figure shows FP rate (left) and FN rate (right) for mailbox
#8, averaged over each week, for the three continuous training settings, and a
threshold of 0.5 for SpamBayes.
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